970 resultados para Fibras oticas - Confiabilidade mecânica
Resumo:
In this work evaluate the technical characteristics of the fibers grown in settlements Guamaré, colored cotton seeds were donated existing in the Germplasm Bank of Embrapa Cotton. We sought through the breeding program, raising the resistance, fineness, length and uniformity of cotton fibers, as well as stabilize the staining of fibers in the BRS Topaz, BRS Brown and BRS Green shades and raise their productivity in the field. First, the individual selections to test progeny seeds, and thereafter the hybridization method followed by family selection to obtain variations in the color tones were performed. The BRS Topaz, BRS Brown and BRS Green varieties were produced, analyzed and compared with existing cottons in the region which is the White cotton. The properties amount of impurities and neps, length, length uniformity, short fiber content, fineness and tensile strength of the fibers were sized in Classifiber, NATI, Pressley and Micronaire devices. 10 trials each with 10 tests for all four fiber types were carried out. The White and Topaz fibers showed greater length (32-34mm) and greater resistance (7.94 lb/mg and 7.97 lb/mg respectively) and showed finesse with lower micronaire index 3,71μg/inch and 3, 73μg/inch and a low rate of short fibers. The results were very promising for the use of genetically improved cotton in the manufacturing of fabric and yarn in the textile industry. The fibers were brown colored cotton used in the manufacture of a composite fiber with thermoplastic resin
Resumo:
The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.
Resumo:
Intelligent and functional Textile Materials have been widely developed and researched with the purpose of being used in several areas of science and technology. These fibrous materials require different chemical and physical properties to obtain a multifunctional material. With the advent of nanotechnology, the techniques developed, being used as essential tools to characterize these new materials qualitatively. Lately the application of micro and nanomaterials in textile substrates has been the objective of many studies, but many of these nanomaterials have not been optimized for their application, which has resulted in increased costs and environmental pollution, because there is still no satisfactory effluent treatment available for these nanomaterials. Soybean fiber has low adsorption for thermosensitive micro and nanocapsules due to their incompatibility of their surface charges. For this reason, in this work initially chitosan was synthesized to functionalise soybean fibres. Chitosan is a natural polyelectrolyte with a high density of positive charges, these fibres have negative charges as well as the micro/nanocápsules, for this reason the chitosan acts as auxiliary agent to cationize in order to fix the thermosensitive microcapsules in the textile substrate. Polyelectrolyte was characterized using particle size analyses and the measurement of zeta potential. For the morphological analysis scanning Electron Microscopy (SEM) and x-Ray Diffraction (XRD) and to study the thermal properties, thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Near Infrared Spectroscopy analysis in the Region of the Fourier Transform Infrared (FTIR), colourimetry using UV-VIS spectrum were simultaneously performed on the substrate. From the measurement of zeta potential and in the determination of the particle size, stability of electrostatic chitosan was observed around 31.55mV and 291.0 nm respectively. The result obtained with (GD) for chitosan extracted from shrimp was 70 %, which according to the literature survey can be considered as chitosan. To optimize the dyeing process a statistical software, Design expert was used. The surface functionalisation of textile substrate with 2% chitosan showed the best result of K/S, being the parameter used for the experimental design, in which this showed the best response of dyeing absorbance in the range of 2.624. It was noted that soy knitting dyed with the thermosensitive micro andnanocapsules property showed excellent washing solidity, which was observed after 25 home washes, and significant K/S values.
Resumo:
On the basis of human evolution and the population increase was necessary, the emergence of new sources of energy, the development of new products and technologies. One such product, object of the industry revolution and of great importance to the development of humanity is the oil, a substance composed primarily of hydrocarbons which give rise to several other products as fuels, lubricants, polymers, solvents, cooking gas, asphalt for roads, fertilizers, medicines, paints, among other. However, mishandling this product may cause leaks and spills that generate huge damages to the environment and the economy. Soon, with the purpose of contributing to decrease is problematic, in this master's work was carried out an intensive search of the possible potential of the fibers of Ceiba pentandra (L.) "Kapok" and Calotropis Procera as bioadsorbents of petroleum in water. The choice of these fibers is due to surface properties such as oleophylics and hydrophobic, their buoyancy and yet, being biodegradable natural polymers derived from the Brazilian Northeast. This research was used experimental planning with response surface methodology (RSM) with the software Design Expert. The results were statistically efficient, obtaining a R2= 0.9995 for Calotropis Procera and a R2= 0.9993 for Kapok. And that, both fibers showed adsorption efficiency, removing more than 80% petroleum in water static and dynamic state.
Resumo:
The need of the oil industry to ensure the safety of the facilities, employees and the environment, not to mention the search for maximum efficiency of its facilities, makes it seeks to achieve a high level of excellence in all stages of its production processes in order to obtain the required quality of the final product. Know the reliability of equipment and what it stands for a system is of fundamental importance for ensuring the operational safety. The reliability analysis technique has been increasingly applied in the oil industry as fault prediction tool and undesirable events that can affect business continuity. It is an applied scientific methodology that involves knowledge in engineering and statistics to meet and or analyze the performance of components, equipment and systems in order to ensure that they perform their function without fail, for a period of time and under a specific condition. The results of reliability analyzes help in making decisions about the best maintenance strategy of petrochemical plants. Reliability analysis was applied on equipment (bike-centrifugal fan) between the period 2010-2014 at the Polo Petrobras Guamaré Industrial, situated in rural Guamaré municipality in the state of Rio Grande do Norte, where he collected data field, analyzed historical equipment and observing the behavior of faults and their impacts. The data were processed in commercial software reliability ReliaSoft BlockSim 9. The results were compared with a study conducted by the experts in the field in order to get the best maintenance strategy for the studied system. With the results obtained from the reliability analysis tools was possible to determine the availability of the centrifugal motor-fan and what will be its impact on the security of process units if it will fail. A new maintenance strategy was established to improve the reliability, availability, maintainability and decreased likelihood of Moto-Centrifugal Fan failures, it is a series of actions to promote the increased system reliability and consequent increase in cycle life of the asset. Thus, this strategy sets out preventive measures to reduce the probability of failure and mitigating aimed at minimizing the consequences.
Resumo:
The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.
Resumo:
The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.
Resumo:
ANDRADE JR., T. E. et al. Infiltração de sal de alumínio em fibras de sisal para obtenção de fibras de alumina. Cerâmica, v.51, n.317, p.37-41.ISSN 0366-6913. Disponível em:
Resumo:
No presente trabalho pretende-se caraterizar a cinética de secagem de papel obtido partir de fibra de algodão. A componente experimental é executada com recurso a uma estação de secagem, munida com equipamentos de controlo e de leitura. O objetivo é realizar a análise da cinética de secagem, com base nas condições impostas através dos parâmetros de entrada, temperatura a humidade relativa e velocidade do ar de secagem. Os resultados permitem determinar a influência dos parâmetros temperatura, humidade relativa, velocidade do escoamento e espessura do material sobre a cinética de secagem. Foi determinada a difusividade em cada ensaio e desenvolvido e validado um modelo matemático de secagem, com recurso aos valores obtidos experimentalmente. A modelação da secagem é realizada através de um modelo que recorre à segunda lei de Fick. São apresentados os resultados da modelação e respetivos desvio padrão relativamente aos valores experimentais.
Resumo:
ANDRADE JR., T. E. et al. Infiltração de sal de alumínio em fibras de sisal para obtenção de fibras de alumina. Cerâmica, v.51, n.317, p.37-41.ISSN 0366-6913. Disponível em:
Resumo:
Devido às necessidades da indústria atual é cada vez mais importante a utilização de métodos de união de materiais distintos. A utilização de adesivos no processo de produção de materiais compósitos tem uma grande aplicação, uma vez que permite ligar os diferentes materiais e ainda reduzir significativamente o peso do conjunto. Este trabalho teve como principal objetivo aumentar a resistência à delaminação de materiais compósitos no sentido da espessura, concretamente dos plásticos reforçados com fibras de carbono (CFRP), através da utilização de placas da liga de alumínio 2024-T3. Este conceito é muito semelhante ao utilizado nos laminados por fibras e metal (LFM) para aumentar a sua resistência à delaminação. Pretendeu-se também a identificação da configuração da junta que apresenta melhores resultados, comparativamente à junta de referência composta apenas por CFRP. Inicialmente, produziram-se apenas juntas de CFRP que foram utilizadas como comparação com os laminados de fibras e metal. Com o objetivo de melhorar a adesão entre os CFRP e a liga de alumínio, foram realizados três tratamentos superficiais diferentes, nomeadamente a lixagem, a anodização e o ataque com ácido. Posteriormente, foram produzidas as juntas com as seguintes configurações: CFRP-AL-CFRP, CFRP-AL-CFRP-AL-CFRP e AL-CFRP-AL. A realização deste trabalho permitiu concluir que com a adição de placas de alumínio, se conseguiu um melhoramento da resistência à delaminação das fibras de carbono e ainda um aumento da resistência específica no sentido da sua espessura. A JSS com a configuração AL-CFRP-AL e com comprimento de sobreposição de 50 mm foi a configuração que apresentou uma força de rotura mais elevada, ou seja, uma maior resistência à delaminação, comparativamente à junta de referência e às restantes configurações em estudo. A falha coesiva verificada perto da interface da junta AL-CFRP-AL, pode ser devida ao elevado comprimento de sobreposição e às diferentes elasticidades do alumínio e do CFRP, o que naturalmente levou a elevadas tensões localizadas nas extremidades da junta. Os resultados demostraram que é possível aumentar a resistência transversal do compósito utilizando uma placa de alumínio.
Resumo:
The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
A evolução dos betões, na procura de estruturas com um maior tempo de vida útil, melhor desempenho ou menores custos de manutenção, tem sido alvo de pesquisa por investigadores de todo o mundo. Neste sentido, o desenvolvimento dos betões de ultra-elevado desempenho (UHPC – Ultra High Performance Concrete), permitiu, desde o seu desenvolvimento inicial, uma multiplicidade de aplicações quer a nível estrutural ou arquitetónico, aportando a estes elementos, vantagens características deste material de construção. No entanto, e particularizando um dos seus constituintes, a aplicação tradicional de fibras metálicas na composição de UHPC, poderá originar alguns fenómenos indesejados de perda de durabilidade, nomeadamente por corrosão destas. Por consequência, julga-se pertinente encontrar alternativas a este componente, de forma a que se obtenha um nível de desempenho semelhante, diminuindo o risco de ocorrência dos fenómenos anteriormente referidos. Neste sentido, o estudo que aqui se apresenta, visa efetuar uma breve abordagem à aplicação de fibras em materiais alternativos tais como fibra de vidro ou fibra de polipropileno. Serão analisadas algumas propriedades em estado fresco e endurecido de várias misturas de betão, com diferentes aplicações de fibras, quer em tipo, quer em dosagem.