903 resultados para Fetal calf serun
Resumo:
Monitoring fetal wellbeing is a compelling problem in modern obstetrics. Clinicians have become increasingly aware of the link between fetal activity (movement), well-being, and later developmental outcome. We have recently developed an ambulatory accelerometer-based fetal activity monitor (AFAM) to record 24-hour fetal movement. Using this system, we aim at developing signal processing methods to automatically detect and quantitatively characterize fetal movements. The first step in this direction is to test the performance of the accelerometer in detecting fetal movement against real-time ultrasound imaging (taken as the gold standard). This paper reports first results of this performance analysis.
Resumo:
Background: Bronchopulmonary dysplasia (BPD) is one of the most common complications after preterm birth and is associated with intrauterine exposure to bacteria. Transforming growth factor-β (TGFβ) is implicated in the development of BPD. Objectives: We hypothesized that different and/or multiple bacterial signals could elicit divergent TGFβ signaling responses in the developing lung. Methods: Time-mated pregnant Merino ewes received an intra-amniotic injection of lipopolysaccharide (LPS) and/or Ureaplasma parvum serovar 3 (UP) at 117 days' and/or 121/122 days' gestational age (GA). Controls received an equivalent injection of saline and or media. Lambs were euthanized at 124 days' GA (term = 150 days' GA). TGFβ1, TGFβ2, TGFβ3, TGFβ receptor (R)1 and TGFβR2 protein levels, Smad2 phosphorylation and elastin deposition were evaluated in lung tissue. Results: Total TGFβ1 and TGFβ2 decreased by 24 and 51% after combined UP+LPS exposure, whereas total TGFβ1 increased by 31% after 7 days' LPS exposure but not after double exposures. Alveolar expression of TGFβR2 decreased 75% after UP, but remained unaltered after double exposures. Decreased focal elastin deposition after single LPS exposure was prevented by double exposures. Conclusions: TGFβ signaling components and elastin responded differently to intrauterine LPS and UP exposure. Multiple bacterial exposures attenuated TGFβ signaling and normalized elastin deposition.
Resumo:
Ureaplasmas are the microorganisms most frequently isolated from the amniotic fluid of pregnant women and can cause chronic intrauterine infections. These tiny bacteria are thought to undergo rapid evolution and exhibit a hypermutatable phenotype; however, little is known about how ureaplasmas respond to selective pressures in utero. Using an ovine model of chronic intra-amniotic infection, we investigated if exposure of ureaplasmas to sub-inhibitory concentrations of erythromycin could induce phenotypic or genetic indicators of macrolide resistance. At 55 days gestation, 12 pregnant ewes received an intra-amniotic injection of a non-clonal, clinical U. parvum strain, followed by: (i) erythromycin treatment (IM, 30 mg/kg/day, n=6); or (ii) saline (IM, n=6) at 100 days gestation. Fetuses were then delivered surgically at 125 days gestation. Despite injecting the same inoculum into all ewes, significant differences between amniotic fluid and chorioamnion ureaplasmas were detected following chronic intra-amniotic infection. Numerous polymorphisms were observed in domain V of the 23S rRNA gene of ureaplasmas isolated from the chorioamnion (but not the amniotic fluid), resulting in a mosaic-like sequence. Chorioamnion isolates also harboured the macrolide resistance genes erm(B) and msr(D) and were associated with variable roxithromycin minimum inhibitory concentrations. Remarkably, this variability occurred independently of exposure of ureaplasmas to erythromycin, suggesting that low-level erythromycin exposure does not induce ureaplasmal macrolide resistance in utero. Rather, the significant differences observed between amniotic fluid and chorioamnion ureaplasmas suggest that different anatomical sites may select for ureaplasma sub-types within non-clonal, clinical strains. This may have implications for the treatment of intrauterine ureaplasma infections.
Resumo:
Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a "response" to burn injury.
Resumo:
Burn-wound healing is a dynamic, interactive process involving a number of cellular and molecular events and is characterized by inflammation, granulation tissue formation, re-epithelialization, and tissue remodeling (Greenhalgh, 2002; Linares, 2002). Unlike incisional-wound healing, it also requires extensive re-epithelialization due to a predominant horizontal loss of tissue and often heals with abnormal scarring when burns involve deep dermis. The early mammalian fetus has the remarkable ability to regenerate normal epidermis and dermis and to heal dermal incisional wounds with no signs of scarring. Extensive research has indicated that scarless healing appears to be intrinsic to fetal skin (McCallion and Ferguson, 1996; Ferguson and O’Kane, 2004). Previously, we reported a fetal burn model, in which 80-day-old ovine fetuses (gestation¼ 145–153 days) healed deep dermal partial thickness burns without scars, whereas postnatal lambs healed equal depth burns with significant scarring (Cuttle et al., 2005; Fraser et al., 2005). This burn model provided early evidence that fetal skin has the capacity to repair and restore dermal horizontal loss, not just vertical injuries.
Resumo:
The Foetal Alcohol Syndrome has long gone unrecognised and undiagnosed in Australia. In the last few years of the 21st Century (2010-14) health practitioners are finally seeking ways of diagnosing the effects of alcohol in pregnancy on the next generation. The author offers a power point presentation which gives guidance on making an accurate diagnosis.
Resumo:
The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.
Resumo:
Among the human diseases that result from chromosomal aberrations, a de novo deletion in chromosome 11p13 is clinically associated with a syndrome characterized by Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR). Not all genes in the deleted region have been characterized biochemically or functionally. We have recently identified the first Class III cyclic nucleotide phosphodiesterase, Rv0805, from Mycobacterium tuberculosis, which biochemically and structurally belongs to the superfamily of metallophosphoesterases. We performed a large scale bioinformatic analysis to identify orthologs of the Rv0805 protein and identified many eukaryotic genes that included the human 239FB gene present in the region deleted in the WAGR syndrome. We report here the first detailed biochemical characterization of the rat 239FB protein and show that it possesses metallophosphodiesterase activity. Extensive mutational analysis identified residues that are involved in metal interaction at the binuclear metal center. Generation of a rat 239FB protein with a mutation corresponding to a single nucleotide polymorphism seen in human 239FB led to complete inactivation of the protein. A close ortholog of 239FB is found in adult tissues, and biochemical characterization of the 239AB protein demonstrated significant hydrolytic activity against 2',3'-cAMP, thus representing the first evidence for a Class III cyclic nucleotide phosphodiesterase in mammals. Highly conserved orthologs of the 239FB protein are found in Caenorhabditis elegans and Drosophila and, coupled with available evidence suggesting that 239FB is a tumor suppressor, indicate the important role this protein must play in diverse cellular events.
Resumo:
The ontogeny of muscarinic receptors was studied in human fetal striatum, brainstem, and cerebellum to investigate general principles of synaptogenesis as well as the physiological balance between various chemical synapses during development in a given region of the brain. [3H]Quinuclidinyl benzilate ([-'H]QNB) binding was assayed in total particulate fraction (TPF) from various parts of brain. In the corpus striatum, QNB binding sites are present at 16 weeks of gestation (average concentration 180 fmol/mg protein of TPF), slowly increase up to 24 weeks (average concentration 217 fmol/mg protein), and rapidly increase during the third trimester to 480 fmol/mg protein of TPF. In contrast, dopaminergic receptors exist as two subpopulations. one with low affinity and the other with high affinity up to the 24th week of gestation; all of them acquire the highaffinity characteristic during the third trimester. In brainstem, the muscarinic receptors show maximum concentration by 16 weeks of age (360 fmolimg protein of TPF). Subsequently the muscarinic receptor concentration shows a gradual decline in the brainstem. In cerebellum, except for a slight increase at 24 weeks (average concentration 90 fmol/mg protein of TPF), the receptor concentration remained nearly constant at about 60-70 fmolimg protein of TPF throughout fetal life. This study demonstrates that the ontogeny of muscarinic receptors varies among the different regions, and the patterns observed suggest that receptor formation occurs principally in the third trimester. Also noteworthy is the finding that the QNB binding sites decreased in all regions of the human brain during adult life. Key Words: Cholinergic muscarinic receptors-Quinuclidinyl benzilate-Corpus striaturn-Brainstem-Cerebellum. Ravikumar B. V. and Sastry P. S. Cholinergic muscarinic receptors in human fetal brain: Ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum. J. Neurochem. 45, 1948- 1950 (1985).
Resumo:
What is calf wastage. Breeding female cattle in north Australia contribute best to business success by producing a heavy weaner each year at the first weaning round. This maximises increase in value by the cow unit over the year, generally from mid-year to mid-year. The ability to cycle in both maiden heifers and lactating cows is the primary limitation to achieving this. Wastage of a calf at any stage between conception and weaning also substantially limits fertility and value increase at a herd level. Embryo loss may result in later calves as cows re-conceive; the calves produced are smaller at weaning and have to be weaned later into the dry season. Late calf wastage usually results in breeders missing a calf for the year. Late calving often also results in failure to cycle, thus cows rear a calf in the subsequent year.
Resumo:
A review of factors that may impact on the capacity of beef cattle females, grazing semi-extensive to extensive pastures in northern Australia, to conceive, maintain a pregnancy and wean a calf was conducted. Pregnancy and weaning rates have generally been used to measure the reproductive performance of herds. However, this review recognises that reproductive efficiency and the general measures associated with it more effectively describe the economic performance of beef cattle enterprises. More specifically, reproductive efficiency is influenced by (1) pregnancy rate which is influenced by (i) age at puberty; (ii) duration of post-partum anoestrus; (iii) fertilisation failure and (iv) embryo survival; while (2) weight by number of calves per breeding female retained for mating is influenced by (i) cow survival; (ii) foetal survival; and (iii) calf survival; and (3) overall lifetime calf weight weaned per mating. These measures of reproductive efficiency are discussed in depth. Further, a range of infectious and non-infectious factors, namely, environmental, physiological, breed and genetic factors and their impact on these stages of the reproductive cycle are investigated and implications for the northern Australian beef industry are discussed. Finally, conclusions and recommendations to minimise reproductive inefficiencies based on current knowledge are presented.
Resumo:
R&D to increase growth of Bali calves in the Eastern Islands of Indonesia.