870 resultados para Feedback Repression
Resumo:
Traditionally, the analysis of gene regulatory regions suffered from the caveat that it was restricted to artificial contexts (e.g. reporter constructs of limited size). With the advent of the BAC recombineering technique, genomic constructs can now be generated to test regulatory elements in their endogenous environment. The expression of the transcriptional repressor brinker (brk) is negatively regulated by Dpp signaling. Repression is mediated by small sequence motifs, the silencer elements (SEs), that are present in multiple copies in the regulatory region of brk. In this work, we manipulated the SEs in the brk locus. We precisely quantified the effects of the individual SEs on the Brk gradient in the wing disc by employing a 1D data extraction method, followed by the quantification of the data with reference to an internal control. We found that mutating the SEs results in an expansion of the brk expression domain. However, even after mutating all predicted SEs, repression could still be observed in regions of maximal Dpp levels. Thus, our data point to the presence of additional, low affinity binding sites in the brk locus.
Resumo:
Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFα, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation.
Resumo:
Chromosome replication in Caulobacter crescentus is tightly regulated to ensure that initiation occurs at the right time and only once during the cell cycle. The timing of replication initiation is controlled by both CtrA and DnaA. CtrA binds to and silences the origin. Upon the clearance of CtrA from the cell, the DnaA protein accumulates and allows loading of the replisome at the origin. Here, we identify an additional layer of replication initiation control that is mediated by the HdaA protein. In Escherichia coli, the Hda protein inactivates DnaA after replication initiation. We show that the Caulobacter HdaA homologue is necessary to restrict the initiation of DNA replication to only once per cell cycle and that it dynamically colocalizes with the replisome throughout the cell cycle. Moreover, the transcription of hdaA is directly activated by DnaA, providing a robust feedback regulatory mechanism that adjusts the levels of HdaA to inactivate DnaA.
Resumo:
We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.
Resumo:
This project examines the effects of age, experience, and video-based feedback on the rate and type of safety-relevant events captured on video event recorders in the vehicles of three groups of newly licensed young drivers: 1. 14.5- to 15.5-year-old drivers who hold a minor school license (see Appendix A for the provisions of the Iowa code governing minor school licenses); 2. 16-year-old drivers with an intermediate license who are driving unsupervised for the first time; 3. 16-year-old drivers with an intermediate license who previously drove unsupervised for at least four months with a school license. METHODS: The young drivers’ vehicles were equipped with an event-triggered video recording device for 24 weeks. Half of the participants received feedback regarding their driving, and the other half received no feedback at all and served as a control group. The number of safety-relevant events per 1,000 miles (i.e., “event rate”) was analyzed for 90 participants who completed the study. RESULTS: On average, the young drivers who received the video-based intervention had significantly lower event rates than those in the control group. This finding was true for all three groups. An effect of experience was seen for drivers in the control group; the 16-year-olds with driving experience had significantly lower event rates than the 16-year-olds without experience. When the intervention concluded, an increase in event rate was seen for the school license holders, but not for either group of 16-year-old drivers. There is strong evidence that giving young drivers video-based feedback, regardless of their age or level of driving experience, is effective in reducing the rate of safety-relevant events relative to a control group who do not receive feedback. Specific comparisons with regard to age and experience indicated that the age of the driver did not have an effect on the rate of safety-events, while experience did. Young drivers with six months or more of additional experience behind the wheel had nearly half as many safety-relevant events as those without that experience.
Resumo:
Objectives The purpose of this study is to assess short and long term changes in knowledge, attitudes, and skills among medical residents following a short course on cultural competency and to explore their perspectives on the experience. Methods Eighteen medical residents went through a short training programme comprised of two seminars lasting 30' and 60' respectively over two days. Three months later, we conducted three focus groups, with 17 residents to explore their thoughts, perspectives and feedback about the course. To measure changes over time, we carried out a quantitative sequential survey before the seminars, three days after, and three months later using the Multicultural Assessment Questionnaire. Results Residents expressed a wide variety of perspectives on the main themes related to the content of the training - culture, trialogue, stereotypes, status, epidemiology, history and geopolitics - and related to its organization - relevance, volume, timing, target audience, training tools, and working material. Using the MAQ, we observed a higher global performance score (n=16) at three days (median=38) compared to results before the training (median=33) revealing a median difference of 5.5 points (z=2.4, p=0.015). This difference was still present at three months (∆=4.5, z=2.4, p=0.018), mainly due to knowledge acquisition (∆=3) rather than attitudes (∆=0) or skills (∆=1). Conclusions Cross-cultural competence training not only brings awareness of multicultural issues but also helps participants understand their own cultures, perception of others and preconceived ideas. Physicians' education should however also focus on improving implementation of acquired knowledge in cross-cultural competence.
Resumo:
Krüppel-associated box domain-zinc finger proteins (KRAB-ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB-mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB-containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB-mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 beta (HP1beta) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1-dependent transcriptional repression at an endogenous KRAB-ZFP gene cluster, where KAP1 binds to the 3' end of genes and mediates propagation of H3K9me3 and HP1beta towards their 5' end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB-ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB-ZFPs and KAP1.
Resumo:
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.
Resumo:
Introduction: Cancer stem cells (CSC) display plasticity and self renewal properties reminiscent of normal tissue stem cells but the events responsible for their emergence remain obscure. We have recently identified CSC in Ewing sarcoma family tumors (ESFT) and shown that they arise from mesenchymal stem cells from the bone marrow. Objective of the study: To analyze the mechanisms underlying cancer stem cell development in ESFT. Methods: Primary human mesenchymal stem cells (MSC) isolation from adult and pediatric bone marrow. Retroviral delivery of fusion protein (EWS-FLI1) to primary MSC, and transcriptional and phenotypical analysis. Results: We show that the EWS-FLI-1 fusion gene, associated wit 85-90% of ESFT and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2 and NANOG in human pediatric MSC (hpMSC) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSC expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWSFLI- 1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Conclusion: Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a cancer stem cell phenotype.
Resumo:
Objectives-Peroxisome proliferator-activated receptor beta/delta (PPAR beta/delta) is a nuclear receptor found in platelets. PPAR beta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPAR beta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPAR beta/delta receptors and their intracellular signaling pathways in platelets are not known. Methods and Results-We have used mice lacking PPAR beta/delta (PPAR beta/delta(-/-)) to show the effects of the PPAR beta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPAR beta/delta, however GW501516 had no PPAR beta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKC alpha, which can mediate platelet activation, was bound and repressed by PPAR beta/delta after platelets were treated with GW501516. Conclusions-These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk. (Arterioscler Thromb Vasc Biol. 2009; 29: 1871-1873.)
Resumo:
Dynamic speed feedback sign (DSFS) systems are traffic control devices that are programmed to provide a message to drivers exceeding a certain speed thresh¬old. A DSFS system typically consists of a speed-measuring device, which may be loop detectors or radar, and a message sign that displays feedback to drivers who exceed a predetermined speed threshold. The feedback may be the driver’s actual speed, a message like “SLOW DOWN,” or activation of a warning device such as beacons or a curve warning sign. For more on this topic by these authors, see also "Evaluation of Dynamic Speed Feedback Signs on Curves: A National Demonstration Project": http://www.trb.org/main/blurbs/172092.aspx
Resumo:
The roles of peroxisome proliferator-activated receptors (PPARs) and CCAAT/enhancer-binding proteins (C/EBPs) in keratinocyte and sebocyte differentiation suggest that both families of transcription factors closely interact in the skin. Initial characterization of the mouse PPARbeta promoter revealed an AP-1 site that is crucial for the regulation of PPARbeta expression in response to inflammatory cytokines in the skin. We now present evidence for a novel regulatory mechanism of the expression of the PPARbeta gene by which two members of the C/EBP family of transcription factors inhibit its basal promoter activity in mouse keratinocytes. We first demonstrate that C/EBPalpha and C/EBPbeta, but not C/EBPdelta, inhibit the expression of PPARbeta through the recruitment of a transcriptional repressor complex containing HDAC-1 to a specific C/EBP binding site on the PPARbeta promoter. Consistent with this repression, the expression patterns of PPARbeta and C/EBPs are mutually exclusive in keratinocytes of the interfollicular epidermis and hair follicles in mouse developing skin. This work reveals the importance of the regulatory interplay between PPARbeta and C/EBP transcription factors in the control of proliferation and differentiation in this organ. Such insights are crucial for the understanding of the molecular control regulating the balance between proliferation and differentiation in many cell types including keratinocytes.
Resumo:
OBJECTIVES: Antibiotic tolerance is a phenomenon allowing bacteria to withstand drug-induced killing. Here, we studied a penicillin-tolerant mutant of Streptococcus gordonii (Tol1), which was shown to be deregulated in the expression of the arginine deiminase operon (arc). arc was not directly responsible for tolerance, but is controlled by the global regulator CcpA. Therefore, we sought whether CcpA might be implicated in tolerance. METHODS: The ccpA gene was characterized and subsequently inactivated by PCR ligation mutagenesis in both the susceptible wild-type (WT) and Tol1. The minimal inhibitory concentration and time-kill curves for the strains were determined and the outcome of penicillin treatment in experimental endocarditis assessed. RESULTS: ccpA sequence and expression were similar between the WT and Tol1 strains. In killing assays, the WT lost 3.5 +/- 0.6 and 5.3 +/- 0.6 log(10) cfu/mL and Tol1 lost 0.4 +/- 0.2 and 1.4 +/- 0.9 log(10) cfu/mL after 24 and 48 h of penicillin exposure, respectively. Deletion of ccpA almost totally restored Tol1 kill susceptibility (loss of 2.5 +/- 0.7 and 4.9 +/- 0.7 log(10) cfu/mL at the same endpoints). In experimental endocarditis, penicillin treatment induced a significant reduction in vegetation bacterial densities between Tol1 (4.1 log(10) cfu/g) and Tol1DeltaccpA (2.4 log(10) cfu/g). Restitution of ccpA re-established the tolerant phenotype both in vitro and in vivo. CONCLUSIONS: CcpA, a global regulator of the carbon catabolite repression system, is implicated in penicillin tolerance both in vitro and in vivo. This links antibiotic survival to bacterial sugar metabolism. However, since ccpA sequence and expression were similar between the WT and Tol1 strains, other factors are probably involved in tolerance.