789 resultados para Feed nutrition
Resumo:
The use of the fish silage as an ingredient in feed for aquatic organisms is an alternative to solve sanitary and environmental problems caused by the lack of an adequate destination for the residues generated by the fishing industry. It would also lower the costs with feed, and consequently the fish production costs, since the expenses with the feed account for approximately 60% of the total cost. The objective of this study was to evaluate the fatty acid composition of the acid silage (AS), biological silage (BS) and enzymatic silage (ES) produced from discardings of the culture and from processing residues of the Nile tilapia (Oreochromis niloticus). The values found for lipids (dry matter basis) were: 12.45; 12.25 and 12.17 g 100 g(-1) for BS, AS, and ES, respectively. The fatty acids present in the lipid fraction of the silages are predominantly unsaturated. Oleic acid was present in larger amounts (30.49, 28.60 and 30.60 g 100 g(-1) of lipids for BS, AS and ES, respectively). Among saturated fatty acids, palmitic and stearic acids were present in larger amounts. Only traces of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids were found. The silages produced from discardings of the culture and processing residues of the Nile tilapia are not a good source of EPA and DHA for fish feeds.
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine`s capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine`s potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.
Resumo:
The objective of this research was to study the behavior of two anaerobic sequencing batch reactors, containing immobilized biomass (AnSBBR), as a function of the ratio of the volume of treated medium in each cycle to the total volume of reaction medium. The reactors, in which mixing was accomplished by recirculation of the liquid phase, were maintained at 30 +/- 1 degrees C and treated different wastewaters in 8-h cycles. The operational conditions imposed had the objective to investigate whether maintenance of a residual volume in the reactor would affect, at the end of each cycle, process efficiency and stability, as well as to verify the intensity of the effect for different types of wastewaters and organic loading rates. The first reactor, with work volume of 2.5 L, treated reconstituted cheese whey at an organic loading rate of 12 g COD.L(-1).d(-1) and presented similar effluent quality for the four conditions under which it was operated: renewal of 100, 70, 50 and 25 % of its work volume at each cycle. Despite the fact that reduction in the renewed volume did not significantly affect effluent quality, in quantitative terms, this reduction resulted in an increase in the amount of organic matter removed by the first reactor. The second reactor, with work volume of 1.8 L, treated synthetic wastewater at organic loading rates of 3 and 5 g COD.L(-1).d(-1) and operated under two conditions for each loading: renewal of 100 and 50 % of its work volume. At the organic loading rate of 3 g COD.L(-1).d(-1), the results showed that both effluent quality and amount of organic matter removed by the second reactor were independent of the treated volume per cycle. At the organic loading rate of 5 g COD.L(-1).d(-1), although the reduction in the renewed volume did not affect the amount of organic matter removed by the reactor, effluent quality improved during reactor operation with total discharge of its volume. In general, results showed process stability under all conditions, evidencing reactor flexibility and the potential to apply this technology in the treatment of different types of wastewater.
Resumo:
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l(-1) day(-1)) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 +/- 1A degrees C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l(-1) day(-1), change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l(-1) day(-1), reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l(-1) day(-1) the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l(-1) day(-1) caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.
Resumo:
The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nitrogen, phosphorus and potassium dose effect in the graft box of lemon tree (of the family Rutaceae) nutrition and production. The aim of the study was to evaluate the graft box of lemon tree (of the family Rutaceae) nutritional state and its components of growth in function of nitrogen, phosphorus and potassium dose by fertilization. The experimental outlining was entirely made casually in factorial scheme 3(3) + 1, being 3 factors (nitrogen, phosphorus and potassium - NPK), 3 doses and in evidence (without fertilization), with 3 repetitions. The experimental milt was constituted by two tubes of 2,8 cm diameter and 12,3 cm high with a graft box (Hipobioto) of lemon tree (of the family Rutaceae) in each tube. The doses used were constituted by doses of N (460; 920 e 18,10 mg dm(-3)), P (50; 100 e 200 mg dm(-3)) and K (395; 790 e 1580 mg dm(-3)). The fertilization with N and K was carried out by fertirrigations and the P added to the substract of Pinus rind and vermiculite before the seeding. when the plants were 133 days after the germination they were subdivided in radicular system and air part for the determinations of the dry matter mass, height, foliar area, stem diameter and contents of nutrients. The N, K and P doses of 920 mg dm(-3), 790 mg dm(-3), 100 mg dm(-3), respectively, were enough for the suitable development of the graft box of lemon tree (of the family Rutaceae) in tubes.
Resumo:
The effects of irrigation with reclaimed wastewater (RWW) were compared with well water (WW) on citrus (Citrus paradisi Macfad. X Citrus aurantium L) nutrition. The deviation from the optimum percentage (DOP) index of macro- and micro-nutrients were used to evaluate the nutritional status: optimal (DOP = 0), deficiency (DOP < 0) or excess (DOP > 0). After 11 years of RWW irrigation the influence on nutrient concentration in plants decreased in the order: B > Zn > Mn = Ca > Cu > Mg > P > K. Reclaimed wastewater irritation positively affected citrus nutrition as it rendered the concentration of macronutrients, i.e. P, Ca, and K. closer to their optimum levels (Sigma DOP(macro) = 7). However micro-nutrients tended to be excessive in plants (EDOP(micro) = 753) due to imbalanced supply of these elements in the RWW, particularly, for B and Cu. Citrus groves with long-term RWW irrigation may exercised caution in monitoring concentrations of B and Cu to avoid plant toxicity and soil quality degradation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Improper dietary protein and energy levels and their ratio will lead to increased fish production cost. This work evaluated effects of dietary protein : energy ratio on growth and body composition of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 +/- 0.4 g) were fed twice a day for 10 weeks until apparent satiation with diets containing 220, 260, 300, 340 or 380 g kg-1 crude protein (CP) and 10.9, 11.7, 12.6, 13.4 or 14.2 MJ kg-1 digestible energy (DE) in a totally randomized experimental design, 5 x 5 factorial scheme (n = 3). Weight gain, specific growth rate increased and feed conversion ratio (FCR) decreased significantly (P < 0.05) when CP increased from 220 to 271, 268 and 281 g kg-1 respectively. Pacu was able to adjust feed consumption in a wide range of dietary DE concentration. Fish fed 260 CP diets showed best (P < 0.05) protein efficiency ratio and FCR with 11.7-12.6 MJ kg-1; but for the 380 CP-diets group, significant differences were observed only at 14.2 MJ kg-1 dietary energy level, suggesting that pacu favours protein as energy source. DE was the chief influence on whole body chemical composition. Minimum dietary protein requirement of pacu is 270 g kg-1, with an optimum CP : DE of 22.2 g MJ-1.
Resumo:
Data on fertilisation and embryo quality in dairy cattle are presented and the main factors responsible for the low fertility of single-ovulating lactating cows and embryo yield in superovulated dairy cattle are highlighted. During the past 50 years, the fertility in high-producing lactating dairy cattle has decreased as milk production increased. Recent data show conception rates to first service to be approximately 32% in lactating cows, whereas in heifers it has remained above 50%. Fertilisation does not seem to be the principal factor responsible for the low fertility in single-ovulating cows, because it has remained above 80%. Conversely, early embryonic development is impaired in high-producing dairy cows, as observed by most embryonic losses occurring during the first week after fertilisation. However, in superovulated dairy cattle, although fertilisation failure is more pronounced, averaging approximately 45%, the percentage of fertilised embryos viable at 1 week is quite high (>70%). Among the multifactorial causes of low fertility in lactating dairy cows, high feed intake associated with low concentrations of circulating steroids may contribute substantially to reduced embryo quality. Fertilisation failure in superovulated cattle may be a consequence of inappropriate gamete transport due to hormonal imbalances.
Resumo:
Impaired immune system by environmental stressors can lead fishes to be more susceptible to diseases that limit the economic development of aquaculture systems. This study was set out to determine the effect of six levels of mannan oligosaccharides (MOS; ActiveMOS((R)); Biorigin, Lencois Paulista, Sao Paulo, Brazil) on the performance index and hematology of Nile tilapia, Oreochromis niloticus juveniles. Fish (13.62 g) were randomly distributed into 18 plastic aquaria (300 L; 20 fishes per aquarium) and fed during 45 d with a commercial diet supplemented with 0, 0.2, 0.4, 0.6, 0.8, and 1% dietary MOS, in a totally randomized design trial (n = 3); biometrical and hematological data were collected and analyzed. There were no significant differences in hematological parameters between fish fed control and MOS supplementation diets, and daily feed consumption (FC) decreased (P < 0.05) with increasing levels of dietary MOS. Dietary MOS did not increase leukocyte count and presented negative effects on FC of Nile tilapia. At 0.4% MOS supplementation, the individual weight gain was higher in absolute values but not different (P > 0.05) compared to control diet.
Resumo:
Commercial farming of carnivorous fish demands the reduction of environmental impact of feeds; that requires minimal use of dietary animal protein. This study investigated the digestibility of diets formulated exclusively out of plant protein, added feed attractants, by the carnivore largemouth bass, Micropterus salmoides. Juvenile largemouth bass (14.0 +/- 1.0 cm) conditioned to accept artificial, dry feed were confined in polypropylene cages and fed ad libitum in three daily meals, seven experimental diets containing varying levels of vegetable and animal protein sources, added of different feed stimulants. After last daily meal, cages were transferred to cylindrical-conical-bottomed, 200-L aquaria, where faeces were collected by sedimentation into refrigerated containers, preserved and later analysed for chemical composition. Soybean meal can be used as partial substitute of animal protein in diets for largemouth bass; the poultry by-product meal shows as a good option as animal protein source in these rations. Control treatment - 50PP : 50AP - yielded best performances; the need for the use of fish meal in the formulation for carnivorous diets is, at least, questionable. Results of the digestibility trials demonstrated the importance of determining the diet digestibility, if precision in the formulation of least-cost feeds for carnivorous fish is the ultimate goal.
Resumo:
Using the fish silage to partially replace proteic feedstuff in aquafeeds is an alternative to mitigate sanitary and environmental problems caused by the lack of adequate destination for fisheries residues. It would also lower feed costs, consequently improving fish culture profitability. However, using fish silages in aquafeeds depends on determination of its apparent digestibility coefficients (ADC). This work aimed to determining the ADC of crude protein and amino acids of acid silage (AS), biological silage (BS) and enzymatic silage (ES) for juvenile Nile tilapia (94.5 +/- 12.7 g). The ADC(CP) was: 92.0%, 89.1% and 93.7% for AS, BS and SE respectively. The average ADC of amino acids was: 91.8%, 90.8% and 94.6% for AS, BS and ES respectively. Results encourage the use of AS, BS and ES to partially replace protein sources in balanced diets for neotropical fish.