982 resultados para Fecal hormones
Resumo:
Background: Thus far, the correlation of noninvasive markers with endoscopic activity in ulcerative colitis (UC) according to the modified Baron Index is unknown. We aimed to evaluate the correlation between endoscopic activity and fecal calprotectin (FC), C-reactive protein (CRP), blood leukocytes, and the Lichtiger Index (clinical score). Methods: UC patients undergoing complete colonoscopy were prospectively enrolled and scored clinically and endoscopically in an independent fashion. Fecal and blood samples were analyzed in UC patients and controls. Results: We enrolled 228 UC patients and 52 controls. Endoscopic disease activity correlated best with FC (Spearman's rank correlation coefficient r = 0.821), followed by the Lichtiger Index (r = 0.682), CRP (r = 0.556), and leukocytes (r = 0.401). FC was the only marker discriminating between different grades of endoscopic activity (grade 0, 20}11 mg/g; grade 1, 44}34 mg/g; grade 2, 111}74 mg/g; grade 3, 330}332 mg/g; grade 4, 659}319 mg/g; P = 0.0018 for discriminating grade 0 vs. 1 and P < 0.001 for discriminating all other grades). FC had the highest overall accuracy (91%) to detect endoscopically active disease (modified Baron Index _2), followed by the Lichtiger Index of _4 (77%), CRP larger than 5 mg/L (69%) and blood leukocytosis (58%). Conclusions: FC better correlated with the endoscopic disease activity than clinical activity, CRP, and blood leukocytes. The strong correlation with endoscopic disease activity suggests that FC represents a useful biomarker for noninvasive monitoring of disease activity in UC patients.
Resumo:
It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextrancharcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding.
Resumo:
Aims: The aims were to create clinically feasible reference intervals for thyroidstimulating hormone (TSH) and free thyroxine (FT4) and to analyze associations between thyroid function and self-rated health, neuropsychiatric symptoms, depression and dementia in the elderly. The second aim was also to establish reference intervals for sex hormones and to analyze associations between sex hormone levels and self-rated health, symptoms, depression and dementia in elderly men. Subjects and methods: The study population comprised 1252 subjects aged 65 years or over, living in the municipality of Lieto, south-western Finland. Self-rated health, life satisfaction, symptoms, depression, and dementia were assessed with specific questions, clinical examination and tools such as the Zung Self-report Depression Scale and the Mini-Mental State Examination. Independent variables were dichotomized, and associations of these variables with TSH, FT4 or sex hormone levels were assessed. Levels of TSH and FT4 in thyroid disease–free women and women treated with thyroxine were also compared. Results: Elevated concentrations of thyroid peroxidase antibodies (TPOAb) or thyroglobulin antibodies (TgAb) were found to have a marked effect on the upper reference limit for TSH among women, who were thyroid antibody positive more higher than suggested in several recent guidelines. After age adjustment, there were no associations between TSH levels and self-rated health, life satisfaction, or most neuropsychiatric symptoms in the thyroid disease-free population. Although women with thyroxine treatment for primary hypothyroidism had far higher TSH levels than thyroid disease-free women, there were no differences between thyroid-disease free women and women with stable thyroxine treatment regarding self-rated health, life satisfaction or symptoms. Age had a significant positive association with luteinizing hormone (LH), follicle 2 practice, one range in men aged 65 years or over can be used for T, E2 and FSH measured with the AutoDelfia method, but two separate reference intervals should be used for fT, LH and SHBG. After adjustment for age, higher levels of T and fT were associated with better self-rated health (SRH) in the reference population. After adjustment for age and body mass index (BMI), there were no associations between sex hormone concentrations and self-rated health, life satisfaction or most symptoms in concentration. Conclusion: Age-specific reference intervals were derived for thyroid function and sex hormones based on comprehensive data from a community-dwelling population with a high participation rate. The results do not support the need to decrease the upper reference limit for TSH or to lower the optimal TSH target in levothyroxine treatment in older adults, as recommended in recent guidelines. Older age or being overweight symptoms among elderly men. The associations of single symptoms with T levels were inconsistent among elderly men, although the association of low T level with diagnosed depression might be clinically significant.
Resumo:
The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic, or defense responses are practically immediate, the procrastinated response do not seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein, and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release). These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e., levels) of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment). Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause) again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.
Resumo:
Sexual dimorphism in the metabolic syndrome. The clairvoyant early implication of sex hormones in the characterization of the metabolic syndrome (MS) was detected early, and in accordance with the well-known sex-related main patterns of fat deposition in obesity: gynoid and android. The differences point to a direct implication of androgens and estrogens in the development, properties and maintenance of obesity and, by extension, to the cumulus of diseases grouped in the MS. For a long time, the key issue of the MS, i.e. the metabolic event explaining (and justifying) most of the derangements of the MS, has been considered to be insulin resistance (...)