953 resultados para Faults detections and localization
Resumo:
The process of light orientation by the snail Biomphalaria glabrata was studied using the selection technique in a Y-shaped aquarium under vertical or horizontal lighting schemes. Snail behavior was measured on the basis of distance (cm) covered per hour, direction of locomotion, and localization of the animal in the aquarium. A comparison was made of the action of the light stimulus on young and adult animals of albino populations from Santa Luzia (State of Minas Gerais, Brazil) and of a melanic population from Touros (State of Rio Grande do Norte) studied in groups and separately. All groups studied were attracted to light. Analysis of the data suggests the exitence of two orientation mechanisms with respect to light in these animals, i.e. high photo-orthokinesia and positive phototaxis, which influence their motion in the environment. This evidence permitted us to discuss features of the distribution dynamics of these mollusks in the environment and their relationship with the larval phases of Schistosoma mansoni, for which they act as intermediated hosts.
Resumo:
The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.
Resumo:
Oenocytes of adult workers and queens of Apis mellifera L. were studied in different ages or life stages, by means of morphometric and histologic techniques. In workers, the oenocytes were found in the head, near the mandibles and in the abdomen, immersed in the parietal fat body mainly below the sterna, close to the wax gland. In queens, two populations of oenocytes different in size and localization were found within the parietal and visceral fat body, respectively. The oenocytes of workers and queens show the presence of acid lipids and acid phosphatase. The role of these cells in the castes differences is discussed.
Resumo:
Human and chimpanzee genomes are 98.8% identical within comparable sequences. However, they differ structurally in nine pericentric inversions, one fusion that originated human chromosome 2, and content and localization of heterochromatin and lineage-specific segmental duplications. The possible functional consequences of these cytogenetic and structural differences are not fully understood and their possible involvement in speciation remains unclear. We show that subtelomeric regions-regions that have a species-specific organization, are more divergent in sequence, and are enriched in genes and recombination hotspots-are significantly enriched for species-specific histone modifications that decorate transcription start sites in different tissues in both human and chimpanzee. The human lineage-specific chromosome 2 fusion point and ancestral centromere locus as well as chromosome 1 and 18 pericentric inversion breakpoints showed enrichment of human-specific H3K4me3 peaks in the prefrontal cortex. Our results reveal an association between plastic regions and potential novel regulatory elements.
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.
Resumo:
At the latitude of the Thor-Odin dome (British Columbia) the Columbia River Detachment defines the eastern margin of the Shuswap metamorphic core complex and localizes in a 1 km thick muscovite-bearing quartzite mylonite. We present a combined Ar-40/Ar-39, (micro) structural, and oxygen isotope study of the deformation history in the detachment and evaluate the spatial and temporal relationships between microstructure formation and localization of strain. High-precision Ar-40/Ar-39 geochronology from different levels in the mylonite delineates a pattern of increasingly younger (49.0 to 47.9 Ma) deformation ages in deeper levels of the mylonitic footwall. The correlation of Ar-40/Ar-39 ages with decreasing deformation temperatures (similar to 550 degrees-400 degrees C) in the top 200 m of the mylonite indicates that deformation migrated downward from the contact with the hanging wall. Strain localization was diachronous in progressively deeper levels of the footwall and was likely controlled by fluid-assisted strain hardening due to advective heat removal and contemporaneous reaction weakening due to dissolution-reprecipitation of white mica. The observed constant high-stress microstructures across the entire detachment indicate that flow stress was buffered by the interplay of strain rate and temperature, where high strain rates at elevated temperature produced the same microstructure as lower strain rates under decreasing temperature conditions. The combined data suggest that the complex interplay among temporally nonuniform rates of footwall exhumation, heat advection, and embrittlement by meteoric fluids strongly determines the thermomechanical behavior of extensional detachments.
Resumo:
PURPOSE: Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. MATERIALS AND METHODS: Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. RESULTS: GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. CONCLUSIONS: Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.
Resumo:
Data on new predictors of outcome include penumbra core or collaterals.Objective: To test the predictive value of recanalization, collaterals, penumbra and core of ischemia for functional outcome in a large group of patients with MCA occlusion. Method: Consecutive events included prospectively in the Acute Stroke Registry and Analysis of Lausanne from April 2002 to April 2009 with an acute stroke due to proximal MCA occlusion (M1) were considered for analysis. Acute CTA were reviewed to grade the collaterals (dichotomized in poor __50% or good _50% compared to the normal side) and localization of M1 occlusion (proximal or mid-distal). Acute CTP were reviewed and reconstructed to determine penumbra, core and stroke index (penumbra/penumbra_core) of brain ischemia. Good outcome was defined by mRS 0-2 at 3 months.Results: Among 242 events (115 male, mean NIHSS 18.1, SD 5.8, mean age 66, SD 15), 42% were treated with intravenous thrombolysis, and 3% with intraarterial thrombolysis. Collateral status was rated as poor in 53% of events and proximal M1 occlusion was present in 64%. Recanalization determined at 24 hours with CTA was complete in 26% events and partial/absent in 54%.CTP was available for 212 events. Mean penumbra was 88.6 cm3 (median 84.4, SD 53.8), mean core was 54.1 cm3 (median 46.2, SD 45.7) and stroke index was 64% (median 68%, SD 25%). Good outcome was observed in 87 events (36%) and was associated in multivariate logistic regression with thrombolysis (p_0.02, OR_2.5, 95% CI 1.2-5.4), recanalization (p_0.001, OR_4.1, 95% CI 1.9-8.9), lower NIHSS (p_0.001, OR_0.84, 95% CI 0.78-0.91), male gender (p_0.01, OR_2.8, 95% CI 1.3-5.9), mRS prior to stroke (p_0.02, OR_0.5, 95% CI 0.28-0.9) and good collateral status (p_0.005, OR_3, 95% CI 1.4-6.4). Nor penumbra, nor core, nor stroke index were significant in the multivariate model, even if an association was present in the univariate model between good functional outcome and penumbra (p_0.004, OR_1.008, 95% CI 1.003-1.01), core (p_0.001, OR_0.98, 95% CI 0.976-0.99) and strokeindex (p_0.001, OR_16.7, 95% CI 4.6 59.9).Conclusion: MCA recanalization is the best predictor for good functional outcome, followed by collateral status. CTP data did not predict the functional outcome in our large group of M1 occlusion. Author Disclosures: C. Odier: None. P. Michel: Research Grant; Significant; Paion, Lundbeck. Speakers; Modest; Boehringer-Ingelheim. Consultant/Advisory Board; Modest; Boehringer- Ingelheim. Consultant/Advisory Board; Significant; Servier, Lundbeck.
Resumo:
The spatial configuration of metapopulations (numbers, sizes, and localization of patches) affects their ability to resist demographic extinction and genetic drift, but sometimes with opposite effects. Small and isolated patches, for instance, contribute marginally to demography but may play a large role in genetics by maintaining a sizeable amount of genetic variance among demes. In source-sink systems, similarly, connectivity may be beneficial in terms of effective size, but detrimental in terms of survival, by lowering the reproductive value of source populations. How to reconcile these opposite effects? Here we propose an analytical framework that integrates fixation time (ability to resist genetic drift) and extinction time (ability to resist demographic extinction) into a single index of resistance, measuring the ability of a metapopulation to maintain its demo-genetic integrity. We then illustrate with numerical examples how conflicting demands may be resolved.
Resumo:
Summary Skin is the essential interface between our body and its environment; not only does it prevent water loss and protect us from external insults it also plays an essential role in the central nervous system acting as a major sense organ primarily for touch and pain. The main cell type present in skin, keratinocyte, undergoes a differentiation process leading to the formation of this protecting barrier. This work is intended to contribute to the understanding of how keratinocyte differentiates and skin functions. To do this, we studied two genetic skin diseases: Erythrokeratodermia variabilis and Mal de Meleda. Our approach was to examine the expression and localization of proteins implicated in these two pathologies in normal and diseased tissues and to determine the influence of mutant proteins at the molecular and cellular levels. Connexins are major components of gap junctions, channels allowing direct communication between cells. Our laboratory has identified mutations in both connexin 30.3 (Cx30.3) and 31 (Cx31) to be causally involved in erythrokeratodermia variabilis (EKV), an autosomal dominant disorder of keratinization. In the first chapter, we show a new mutation of Cx31, L209P-Cx31, in 3 EKV patients, extending the field of EKV-causing mutations although the mechanism by which connexin mutations lead to the disease is unclear. In the second chapter, we studied the effect of F137L-Cx30.3 on expression, trafficking and localization of cotransfected Cx31 and Cx30.3 in connexin-deficient HeLa cells. The F137 amino acid, highly conserved in connexin family, is oriented towards the channel pore and F137L mutation in either Cx30.3 or Cx31 lead to EKV. As two genes can lead to EKV when mutated, our hypothesis was that Cx31 and Cx30.3 might cooperate at a molecular level. We were able to demonstrate a physical interaction between Cx31 and Cx30.3. The presence of F137L-Cx30.3 disturbed the trafficking of both connexins, less connexins were integrated into gap junctions and thus, the coupling between cell was diminished. Connexins formed in the presence of F137L-Cx30.3 are degraded at their exit from the endoplasmic reticulum. In conclusion, our results indicate that the genetic heterogeneity of EKV is due to mutations in two interacting proteins. F137L-Cx30.3 has a dominant negative effect and affects Cx31, disturbing cellular communication in epidermal cells. Mal de Meleda is an autosomal recessive inflammatory and a keratotic palmoplantar skin disorder due to mutations in SLURP1 (secreted LY6/PLAUR-related protein 1). SLURP1 belongs to the LY6/PLAUR family of proteins and has the particularity of being secreted instead of being GPI-anchored. The high degree of structural similarity between SLURP1 and the three fingers motif of snake neurotoxins and LYNX 1-C suggests that this protein could interact with the neuronal acetylcholine receptors. In the third chapter, we show that SLURP1 potentiates responses of the a7 nicotinic acetylcholine receptor (nAchR) to acetylcholine. These results identify SLURP1 as a secreted epidermal neuromodulator that is likely to be essential for palmoplantar skin. In the fourth chapter, we show that SLURP1 is expressed in the granular layer of the epidermis but is absent from skin biopsies of Mal de Meleda patients. SLURP1 is also present in secretions such as sweat, tears or saliva. An in vitro analysis on two mutant of SLURP-I demonstrates that W15R-SLURP1 is absent in cells while G86R-SLURP1 is expressed and secreted, suggesting that SLURP1 can lead to the disease by either an absent or an abnormal protein. Finally, in the fifth chapter, we analyse the expression and biological properties of other LY6/PLAUR members, clustered around SLURP] on chromosome 8. Their GPI-anchored or secreted status were analysed in vitro. SLURP1, LYNX1-A and -B are secreted while LYPDC2 and LYNX 1-C are GPI anchored. Three of these proteins are expressed in the epidermis and in cultured keratinocytes. These results suggest that these LY6/PLAUR members may have an important role in skin homeostasis. Résumé Résumé La peau est la barrière essentielle entre notre corps et l'environnement, nous protégeant des agressions extérieures, de la déshydratation et assurant aussi un rôle dans le système nerveux central en tant qu'organe du toucher et de la douleur. Le principal type de cellules présent dans la peau est le kératinocyte qui suit un processus de différenciation aboutissant à la formation de cette barrière protectrice. Ce travail est destiné à comprendre la différenciation des kératinocytes et le fonctionnement de la peau. Pour cela, nous avons étudié deux maladies génodermatoses : l'Erthrokeratodermia Variabilis (EKV) et le Mal de Meleda. Nous avons examiné l'expression et la localisation des protéines impliquées dans ces deux pathologies dans des tissus normaux et malades puis déterminé l'influence des protéines mutantes aux niveaux moléculaires et cellulaires. Les connexines (Cx) sont les composants majeurs des jonctions communicantes, canaux permettant la communication directe entre les cellules. Notre laboratoire a identifié des mutations dans les Cx30.3 et Cx31 comme responsables de l'EKV, génodermatose de transmission autosomique dominante. Dans le ler chapitre, nous décrivons une nouvelle mutation de Cx31, L209-Cx31, et contribuons à l'établissement du catalogue des mutations de Cx31 entraînant cette maladie. Cependant, le mécanisme par lequel les mutations de Cx31 et C3x0.3 provoquent l'EKV est inconnu. Dans le 2ème chapitre, nous étudions les effets de la mutation F137L-Cx30.3 sur l'expression, le trafic et la localisation des Cx31 et Cx30.3 transfectées dans des cellules HeLa, déficientes en connexines. Comme deux gènes peuvent causer une EKV quand ils sont mutés, notre hypothèse était que Cx31 et Cx30.3 pourraient coopérer au niveau moléculaire. Nous avons montré l'existence d'une interaction physique entre ces deux connexines. La présence de la mutation F137L-Cx30.3 perturbe le trafic des deux connexines, moins de connexines sont intégrées dans les jonctions communicantes et donc le couplage entre les cellules est diminué. Les connexons formés en présence de cette mutation sont dégradés à leur sortie du réticulum endoplasmique. En conclusion, nos résultats indiquent que l'hétérogénéité génétique de EKV est due à des mutations dans deux protéines qui interagissent. F137L-Cx30.3 a un effet dominant négatif et affecte Cx31, perturbant la communication entre les cellules épidermiques. Le Mal de Meleda est une maladie récessive de la peau palmoplantaire due à des mutations dans SLURP1. SLURP1 appartient à la famille des protéines contenant un domaine LY6/PLAUR et a la particularité d'être sécrétée. La grande homologie de structure existant entre SLURP1, les neurotoxines de serpent et LYNX1-C suggère que la protéine pourrait interagir avec des récepteurs à acétylcholine (Ach). Dans le 3ème chapitre, nous montrons que SLURP1 module la réponse à l'Ach du récepteur nicotinique α7. Ces résultats identifient SLURP1 comme un neuromodulateur épidermique sécrété, probablement essentiel pour la peau palmoplantaire. Dans le 4ème chapitre, nous montrons que SLURP1 est exprimé dans la couche granuleuse de l'épiderme et qu'il est absent des biopsies des patients. SLURP1 a aussi été détecté dans des sécrétions telles que la sueur, les lamies et la salive. Une analyse in vitro de deux mutants de SLURP1 a montré que W15R-SLURP1 est absent des cellules tandis que G86R-SLURP1 est exprimé et sécrété, suggérant qu'une absence ou une anomalie de SLURP1 peuvent causer la maladie. Finalement, dans le 5ème chapitre, nous analysons l'expression et les propriétés biologiques d'autres membres de la famille LY6/PLAUR localisés autour de SLURP1 sur le chromosome 8. Leur statut de protéines sécrétées ou liées à la membrane par une ancre GPI est analysé in vitro. SLURP1, LYNXI-A et -B sont sécrétées alors que LYPDC2 et LYNX1-C sont liés à la membrane. Trois de ces protéines sont exprimées dans l'épiderme et dans des kératinocytes cultivés. Ces résultats suggèrent que la famille LY6/PLAUR pourrait avoir un rôle important dans l'homéostasie de la peau.
Resumo:
The populations of Capercaillie (Tetrao urogallus), the largest European grouse, have seriously declined during the last century over most of their distribution in western and central Europe. In the Jura mountains, the relict population is now isolated and critically endangered (about 500 breeding adults). We developed a simulation software (TetrasPool) that accounts for age and spatial structure as well as stochastic processes, to perform a viability analysis and explore management scenarios for this population, capitalizing on a 24 years-long series of field data. Simulations predict a marked decline and a significant extinction risk over the next century, largely due to environmental and demographic stochasticity (average values of life-history parameters would otherwise allow stability). Variances among scenarios mainly stem from uncertainties about the shape and intensity of density dependence. Uncertainty analyses suggest to focus conservation efforts on enhancing, not only adult survival (as often advocated for long-lived species), but also recruitment. The juvenile stage matters when local populations undergo extinctions, because it ensures connectivity and recolonization. Besides limiting human perturbations, a silvicultural strategy aimed at opening forest structure should improve the quality and surface of available patches, independent of their size and localization. Such measures are to be taken urgently, if the population is to be saved.
Resumo:
Purpose:We previously observed that anti- and pro-apoptotic genes of the Bcl-2 family were differentially expressed during the development of LCA in the Rpe65-/- mouse model (Cottet et al. 2006). Moreover, we reported that activation and translocation of pro-apoptotic Bax to the mitochondria was associated with apoptosis of rod photoreceptors as the disease progressed (Cottet et al. 2008). In this study we challenged whether disruption of the pro-apoptotic pro-apoptotic Bax protein is sufficient to protect photoreceptor cells against apoptosis. Methods:Apoptosis of photoreceptor cells was addressed by TUNEL assay on flatmounted retinas. Counting of the rod nuclei within the ONL was performed following hematoxylin/eosin histological staining of retina sections. Expression level and localization of photoreceptor gene markers were assessed by quantitative PCR and immunohistological analyses. Results:While expression of rod photoreceptor genes was decreased in Rpe65-deficient retina, expression level remained unchanged in Rpe65-/- / Bax-/- mice. Moreover, OS dysorganization and shortening as well as decrease in ONL thickness observed in diseased retina were prevented in mice lacking functional Bax protein. TUNEL assay confirmed that Bax-dependent rod photoreceptor apoptosis was abolished in Rpe65-/- / Bax-/- mice. However, early and fast degeneration of cone cells was not prevented in Rpe65-/- / Bax-/- mice, indicating that Bax-induced apoptotic pathway was not involved in the degenerating process of cones in Rpe65-deficient retina. Conclusions:Altogether, these data show for the first time that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in LCA disease. While pro-apoptotic Bax is essential to trigger rod photoreceptor apoptosis, early degeneration of cones is not dependent on Bax-mediated apoptotic pathway in Rpe65-deficientmice.
Resumo:
PURPOSE: Successful photodynamic therapy of epithelial cancer requires a specific photosensitization of malignant tissue. We evaluate the intensity and localization of protoporphyrin IX (PpIX) in superficial transitional cell carcinoma and nonmalignant cells of the human bladder following topical administration of its precursor, either aminolevulinic acid (ALA) or hexylester aminolevulinate (HAL). MATERIALS AND METHODS: Solutions of ALA or HAL were instilled into the bladder of 18 patients presenting with recurrent transitional cell carcinoma. The distribution of PpIX through the bladder wall was studied on frozen biopsies using fluorescence microscopy and correlated with pathological findings. RESULTS: Topical bladder instillation with 180 mmol (3%) ALA administered for 6 hours or 8 mmol (0.2%) HAL administered for 4 hours gave similar results regarding intensity and tissue distribution of PpIX fluorescence, whereas 8 mmol HAL administered for 2 hours followed by 2 hours of resting time (2+2 hours concept) induced a PpIX fluorescence twice as high. The fluorescence remained limited to cancer cells. Only a trace of PpIX fluorescence was observed in suburothelial connective tissue, that is chorion, but none in the bladder smooth muscle regardless of experiment conditions. CONCLUSIONS: HAL is an excellent precursor for PpIX synthesis in bladder cancer. With the 2+2 hour topical administration condition it yielded the highest PpIX fluorescence intensity and fluorescence contrast between normal and malignant urothelial cells. This approach allows us to optimize PpIX tissue distribution for photodynamic therapy in superficial bladder cancer.
Resumo:
The brain requires a constant and substantial energy supply to maintain its main functions. For decades, it was assumed that glucose was the major if not the only significant source of energy for neurons. This view was supported by the expression of specific facilitative glucose transporters on cerebral blood vessels, as well as neurons. Despite the fact that glucose remains a key energetic substrate for the brain, growing evidence suggests a different scenario. Thus astrocytes, a major type of glial cells that express their own glucose transporter, play a critical role in coupling synaptic activity with glucose utilization. It was shown that glutamatergic activity triggers an enhancement of aerobic glycolysis in this cell type. As a result, lactate is provided to neurons as an additional energy substrate. Indeed, lactate has proven to be a preferential energy substrate for neurons under various conditions. A family of proton-linked carriers known as monocarboxylate transporters has been described and specific members have been found to be expressed by endothelial cells, astrocytes and neurons. Moreover, these transporters are subject to fine regulation of their expression levels and localization, notably in neurons, which suggests that lactate supply could be adjusted as a function of their level of activity. Considering the importance of energetics in the aetiology of several neurodegenerative diseases, a better understanding of its cellular and molecular underpinnings might have important implications for the future development of neuroprotective strategies.