948 resultados para Fault location algorithms
Resumo:
This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.
Resumo:
Les noves tecnologies a la xarxa ens permeten transportar, cada cop més, grans volums d' informació i trànsit de xarxa amb diferents nivells de prioritat. En aquest escenari, on s'ofereix una millor qualitat de servei, les conseqüències d'una fallada en un enllaç o en un node esdevenen més importants. Multiprotocol Lavel Switching (MPLS), juntament amb l'extensió a MPLS generalitzat (GMPLS), proporcionen mecanismes ràpids de recuperació de fallada establint camins, Label Switch Path (LSPs), redundants per ser utilitzats com a camins alternatius. En cas de fallada podrem utilitzar aquests camins per redireccionar el trànsit. El principal objectiu d'aquesta tesi ha estat millorar alguns dels actuals mecanismes de recuperació de fallades MPLS/GMPLS, amb l'objectiu de suportar els requeriments de protecció dels serveis proporcionats per la nova Internet. Per tal de fer aquesta avaluació s'han tingut en compte alguns paràmetres de qualitat de protecció com els temps de recuperació de fallada, les pèrdues de paquets o el consum de recursos. En aquesta tesi presentem una completa revisió i comparació dels principals mètodes de recuperació de fallada basats en MPLS. Aquest anàlisi inclou els mètodes de protecció del camí (backups globals, backups inversos i protecció 1+1), els mètodes de protecció locals i els mètodes de protecció de segments. També s'ha tingut en compte l'extensió d'aquests mecanismes a les xarxes òptiques mitjançant el pla de control proporcionat per GMPLS. En una primera fase d'aquest treball, cada mètode de recuperació de fallades és analitzat sense tenir en compte restriccions de recursos o de topologia. Aquest anàlisi ens dóna una primera classificació dels millors mecanismes de protecció en termes de pèrdues de paquets i temps de recuperació. Aquest primer anàlisi no és aplicable a xarxes reals. Per tal de tenir en compte aquest nou escenari, en una segona fase, s'analitzen els algorismes d'encaminament on sí tindrem en compte aquestes limitacions i restriccions de la xarxa. Es presenten alguns dels principals algorismes d'encaminament amb qualitat de servei i alguna de les principals propostes d'encaminament per xarxes MPLS. La majoria dels actual algorismes d'encaminament no tenen en compte l'establiment de rutes alternatives o utilitzen els mateixos objectius per seleccionar els camins de treball i els de protecció. Per millorar el nivell de protecció introduïm i formalitzem dos nous conceptes: la Probabilitat de fallada de la xarxa i l'Impacte de fallada. Un anàlisi de la xarxa a nivell físic proporciona un primer element per avaluar el nivell de protecció en termes de fiabilitat i disponibilitat de la xarxa. Formalitzem l'impacte d'una fallada, quant a la degradació de la qualitat de servei (en termes de retard i pèrdues de paquets). Expliquem la nostra proposta per reduir la probabilitat de fallada i l'impacte de fallada. Per últim fem una nova definició i classificació dels serveis de xarxa segons els valors requerits de probabilitat de fallada i impacte. Un dels aspectes que destaquem dels resultats d'aquesta tesi és que els mecanismes de protecció global del camí maximitzen la fiabilitat de la xarxa, mentre que les tècniques de protecció local o de segments de xarxa minimitzen l'impacte de fallada. Per tant podem assolir mínim impacte i màxima fiabilitat aplicant protecció local a tota la xarxa, però no és una proposta escalable en termes de consum de recursos. Nosaltres proposem un mecanisme intermig, aplicant protecció de segments combinat amb el nostre model d'avaluació de la probabilitat de fallada. Resumint, aquesta tesi presenta diversos mecanismes per l'anàlisi del nivell de protecció de la xarxa. Els resultats dels models i mecanismes proposats milloren la fiabilitat i minimitzen l'impacte d'una fallada en la xarxa.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Resumo:
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
Combinatorial optimization problems, are one of the most important types of problems in operational research. Heuristic and metaheuristics algorithms are widely applied to find a good solution. However, a common problem is that these algorithms do not guarantee that the solution will coincide with the optimum and, hence, many solutions to real world OR-problems are afflicted with an uncertainty about the quality of the solution. The main aim of this thesis is to investigate the usability of statistical bounds to evaluate the quality of heuristic solutions applied to large combinatorial problems. The contributions of this thesis are both methodological and empirical. From a methodological point of view, the usefulness of statistical bounds on p-median problems is thoroughly investigated. The statistical bounds have good performance in providing informative quality assessment under appropriate parameter settings. Also, they outperform the commonly used Lagrangian bounds. It is demonstrated that the statistical bounds are shown to be comparable with the deterministic bounds in quadratic assignment problems. As to empirical research, environment pollution has become a worldwide problem, and transportation can cause a great amount of pollution. A new method for calculating and comparing the CO2-emissions of online and brick-and-mortar retailing is proposed. It leads to the conclusion that online retailing has significantly lesser CO2-emissions. Another problem is that the Swedish regional division is under revision and the border effect to public service accessibility is concerned of both residents and politicians. After analysis, it is shown that borders hinder the optimal location of public services and consequently the highest achievable economic and social utility may not be attained.
Resumo:
The p-median problem is often used to locate P service facilities in a geographically distributed population. Important for the performance of such a model is the distance measure. Distance measure can vary if the accuracy of the road network varies. The rst aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the road network is alternated. It is hard to nd an exact optimal solution for p-median problems. Therefore, in this study two heuristic solutions are applied, simulating annealing and a classic heuristic. The secondary aim is to compare the optimal location solutions using dierent algorithms for large p-median problem. The investigation is conducted by the means of a case study in a rural region with an asymmetrically distributed population, Dalecarlia. The study shows that the use of more accurate road networks gives better solutions for optimal location, regardless what algorithm that is used and regardless how many service facilities that is optimized for. It is also shown that the simulated annealing algorithm not just is much faster than the classic heuristic used here, but also in most cases gives better location solutions.
Resumo:
Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An analysis of the performances of three important methods for generators and loads loss allocation is presented. The discussed methods are: based on pro-rata technique; based on the incremental technique; and based on matrices of circuit. The algorithms are tested considering different generation conditions, using a known electric power system: IEEE 14 bus. Presented and discussed results verify: the location and the magnitude of generators and loads; the possibility to have agents well or poorly located in each network configuration; the discriminatory behavior considering variations in the power flow in the transmission lines. © 2004 IEEE.
Resumo:
Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.
Resumo:
Nowadays there is great interest in structural damage detection in systems using nondestructive tests. Once the failure is detected, as for instance a crack, it is possible to take providences. There are several different approaches that can be used to obtain information about the existence, location and extension of the fault in the system by non-destructive tests. Among these methodologies, one can mention different optimization techniques, as for instance classical methods, genetic algorithms, neural networks, etc. Most of these techniques, which are based on element-byelement adjustments of a finite element (FE) model, take advantage of the dynamic behavior of the model. However, in practical situations, usually, is almost impossible to obtain an accuracy model. In this paper, it is proposed an experimental technique for damage location. This technique is based on H: norm to obtain the damage location. The dynamic properties of the structure were identified using experimental data by eigensystem realization algorithm (ERA). The experimental test was carried out in a beam structure through varying the mass of an element. For the output signal was used a piezoelectric sensor. The signal of input of sine form was generated through SignalCalc® software.
Resumo:
In this paper, a methodology based on Unconstrained Binary Programming (UBP) model and Genetic Algorithms (GAs) is proposed for estimating fault sections in automated distribution substations. The UBP model, established by using the parsimonious set covering theory, looks for the match between the relays' protective alarms informed by the SCADA system and their expected states. The GA is developed to minimize the UBP model and estimate the fault sections in a swift and reliable manner. The proposed methodology is tested by utilizing a real-life automated distribution substation. Control parameters of the GA are tuned to achieve maximum computational efficiency and reduction of processing time. Results show the potential and efficiency of the methodology for estimating fault section in real-time at Distribution Control Centers. ©2009 IEEE.