993 resultados para Failure Probability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australia’s civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. Road assets alone are valued at around A$ 140 billion. As the condition of assets deteriorate over time, close to A$10 billion is spent annually in asset maintenance on Australia's roads, or the equivalent of A$27 million per day. To effectively manage road infrastructures, firstly, road agencies need to optimise the expenditure for asset data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. A procedure for assessing investment decision for road asset management has been developed. The procedure includes: • A methodology for optimising asset data collection; • A methodology for calibrating deterioration prediction models; • A methodology for assessing risk-adjusted estimates for life-cycle cost estimates. • A decision framework in the form of risk map

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report presents a methodology for whole of life cycle cost analysis of alternative treatment options for bridge structures, which require rehabilitation. The methodology has been developed after a review of current methods and establishing that a life cycle analysis based on a probabilistic risk approach has many advantages including the essential ability to consider variability of input parameters. The input parameters for the analysis are identified as initial cost, maintenance, monitoring and repair cost, user cost and failure cost. The methodology utilizes the advanced simulation technique of Monte Carlo simulation to combine a number of probability distributions to establish the distribution of whole of life cycle cost. In performing the simulation, the need for a powerful software package, which would work with spreadsheet program, has been identified. After exploring several products on the market, @RISK software has been selected for the simulation. In conclusion, the report presents a typical decision making scenario considering two alternative treatment options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focusing primarily on Anglophone countries, this article begins by looking at the changing environment of foundations, the pressures on foundations and some responses to those pressures. It then focuses on the potential of a structural change approach - often known as 'social change' or 'social justice' grant-making - as a solution to some of the modern dilemmas of foundations, and considers why this approach has, with some exceptions, gained relatively little support. This raises the wider issues of why and how resource-independent, endowed foundations change when conventional explanations of organisational change do not easily apply. Researching a 'lack' is clearly difficult; this article adopts an analytic perspective, examining the characteristics of the structural change approach as a mimetic model, and draws on the work of Rogers (2003) on the characteristics required for the successful diffusion of innovations. It suggests that the structural change approach suffers from some fundamental weaknesses as a mimetic model, failing to meet some key characteristics for the diffusion of innovations. In conclusion, the article looks at conditions under which these weaknesses may be overcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting Time-to-Failure (TTF) and the probability of failure in future time are essential. In traditional reliability models, the lifetime of assets is estimated using failure time data. However, in most real-life situations and industry applications, the lifetime of assets is influenced by different risk factors, which are called covariates. The fundamental notion in reliability theory is the failure time of a system and its covariates. These covariates change stochastically and may influence and/or indicate the failure time. Research shows that many statistical models have been developed to estimate the hazard of assets or individuals with covariates. An extensive amount of literature on hazard models with covariates (also termed covariate models), including theory and practical applications, has emerged. This paper is a state-of-the-art review of the existing literature on these covariate models in both the reliability and biomedical fields. One of the major purposes of this expository paper is to synthesise these models from both industrial reliability and biomedical fields and then contextually group them into non-parametric and semi-parametric models. Comments on their merits and limitations are also presented. Another main purpose of this paper is to comprehensively review and summarise the current research on the development of the covariate models so as to facilitate the application of more covariate modelling techniques into prognostics and asset health management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rather than understanding the recurrent failure of various attempts at crime control as unfortunate and undesirable aberrations, all too familiar glitches an otherwise uninterrupted teleological march to a better society, such failures are instead positioned as part of the fabric of late modernity itself. That is, society changes not according to a predetermined logic along neatly defined and clearly reasoned tracks, rather it hurtles from crisis to crisis, from failure to failure, and it is the regulation of that failure which produces new initiatives and new forms of governance. Utilising the example of the modern prison, this chapter contends that too great an emphasis upon this institution’s ‘failure’ results not only in a neglect of the many other functions that it serves in the regulation of difference, but also, and more generally, it results in an underestimation of the importance of failure in providing new impetus for social transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Government figures put the current indigenous unemployment rate at around 23%, 3 times the unemployment rate for other Australians. This thesis aims to assess whether Australian indirect discrimination legislation can provide a remedy for one of the causes of indigenous unemployment - the systemic discrimination which can result from the mere operation of established procedures of recruitment and hiring. The impact of those practices on indigenous people is examined in the context of an analysis of anti-discrimination legislation and cases from all Australian jurisdictions from the time of the passing of the Racial Discrimination Act by the Commonwealth in 1975 to the present. The thesis finds a number of reasons why the legislation fails to provide equality of opportunity for indigenous people seeking to enter the workforce. In nearly all jurisdictions it is obscurely drafted, used mainly by educated middle class white women, and provides remedies which tend to be compensatory damages rather than change to recruitment policy. White dominance of the legal process has produced legislative and judicial definitions of "race" and "Aboriginality" which focus on biology rather than cultural difference. In the commissions and tribunals complaints of racial discrimination are often rejected on the grounds of being "vexatious" or "frivolous", not reaching the required standard of proof, or not showing a causal connection between race and the conduct complained of. In all jurisdictions the cornerstone of liability is whether a particular employment term, condition or practice is reasonable. The thesis evaluates the approaches taken by appellate courts, including the High Court, and concludes that there is a trend towards an interpretation of reasonableness which favours employer arguments such as economic rationalism, the maintenance of good industrial relations, managerial prerogative to hire and fire, and the protection of majority rights. The thesis recommends that separate, clearly drafted legislation should be passed to address indigenous disadvantage and that indigenous people should be involved in all stages of the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.