917 resultados para Face-to-face meetings


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As proeminentes edificações da cidade de Belém foram revestidas durante o século 19 com azulejos produzidos em Portugal e Alemanha que já apresentam distintos graus de degradação. O Palacete Pinho é uma das mais importantes destas edificações e foi selecionado para se investigar a ação do clima tropical amazônico sobre a degradação destes azulejos. Para atingir estes objetivos mapearam-se os azulejos desta edificação visando identificar as modificações de origem orgânica e inorgânica e coletas de amostras para análises. Os minerais foram determinados por DRX, a composição química por métodos clássicos úmidos e MEV/SED e os micro-organismos por microscopia. Os resultados obtidos mostram que os azulejos Portugueses e Alemães são distintos entre si. Enquanto o biscoito é composto de SiO2 e Al2O3, CaO foi encontrado apenas nos Portugueses. Os baixos conteúdos de Na2O e K2O indicam adição de materiais para redução da temperatura de fusão. SiO2 e PbO compõem o vidrado, já CoO e FeO foram adicionados como pigmentos. O biscoito dos azulejos Alemães é constituído de quartzo, mullita e cristobalita, ao contrário do Português com quartzo, gehlenita, diopsídio, calcita e feldspatos. Os vidrados são amorfos ao DRX. As diferenças químicas e mineralógicas entre os azulejos Portugueses e Alemães indicam que foram produzidos por matéria prima distinta, bem como processo termal. As alterações relacionadas com o intemperismo são as finas camadas de detritos (nos Alemães), manchas de oxidação, manchas escuras, descolamento do azulejo (no Português); perda de vidrado e biscoito tornando-se pulverulento como consequência do estabelecimento de Cyanophyta e bacillariophyta (Português). As distintas feições de degradação dos azulejos refletem as suas diferenças mineralógicas e químicas expostas ao clima tropical Amazônico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Individuals with facial paralysis of 6 months or more without evidence of clinical or electromyographic improvement have been successfully reanimated utilizing an orthodromic temporalis transfer in conjunction with end-to-side cross-face nerve grafts. The temporalis muscle insertion is released from the coronoid process of the mandible and sutured to a fascia lata graft that is secured distally to the commissure and paralyzed hemilip. The orthodromic transfer of the temporalis muscle overcomes the concave temporal deformity and zygomatic fullness produced by the turning down of the central third of the muscle (Gillies procedure) while yielding stronger muscle contraction and a more symmetric smile. The muscle flap is combined with cross-face sural nerve grafts utilizing end-to-side neurorrhaphies to import myelinated motor fibers to the paralyzed muscles of facial expression in the midface and perioral region. Cross-face nerve grafting provides the potential for true spontaneous facial motion. We feel that the synergy created by the combination of techniques can perhaps produce a more symmetrical and synchronized smile than either procedure in isolation.Nineteen patients underwent an orthodromic temporalis muscle flap in conjunction with cross-face (buccal-buccal with end-to-side neurorrhaphy) nerve grafts. To evaluate the symmetry of the smile, we measured the length of the two hemilips (normal and affected) using the CorelDRAW X3 software. Measurements were obtained in the pre- and postoperative period and compared for symmetry.There was significant improvement in smile symmetry in 89.5 % of patients.Orthodromic temporalis muscle transfer in conjunction with cross face nerve grafts creates a synergistic effect frequently producing an aesthetic, symmetric smile.This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.spinger.com/00266.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is a popular concept in clinical neurology that muscles of the lower face receive predominantly crossed cortico-bulbar motor input, whereas muscles of the upper face receive additional ipsilateral, uncrossed input. To test this notion, we used focal transcranial magnetic brain stimulation to quantify crossed and uncrossed cortico-muscular projections to 6 different facial muscles (right and left Mm. frontalis, nasalis, and orbicularis oris) in 36 healthy right-handed volunteers (15 men, 21 women, mean age 25 years). Uncrossed input was present in 78% to 92% of the 6 examined muscles. The mean uncrossed: crossed response amplitude ratios were 0.74/0.65 in right/left frontalis, 0.73/0.59 in nasalis, and 0.54/0.71 in orbicularis oris; ANOVA p>0.05). Judged by the sizes of motor evoked potentials, the cortical representation of the 3 muscles was similar. The amount of uncrossed projections was different between men and women, since men had stronger left-to-left projections and women stronger right-to-right projections. We conclude that the amount of uncrossed pyramidal projections is not different for muscles of the upper from those of the lower face. The clinical observation that frontal muscles are often spared in central facial palsies must, therefore, be explained differently. Moreover, gender specific lateralization phenomena may not only be present for higher level behavioural functions, but may also affect simple systems on a lower level of motor hierarchy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methodological approaches in which data on nonverbal behavior are collected usually involve interpretive methods in which raters must identify a set of defined categories of behavior. However, present knowledge about the qualitative aspects of head movement behavior calls for recording detailed transcriptions of behavior. These records are a prerequisite for investigating the function and meaning of head movement patterns. A method for directly collecting data on head movement behavior is introduced. Using small ultrasonic transducers, which are attached to various parts of an index person's body (head and shoulders), a microcomputer defines receiver-transducers distances. Three-dimensional positions are calculated by triangulation. These data are used for further calculations concerning the angular orientation of the head and the direction, size, and speed of head movements (in rotational, lateral, and sagittal dimensions).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25±4.8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta–theta, alpha, and beta EEG frequency band, and for the full range (1.5–30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta–theta band, more posterior and more right for the alpha, beta and 1.5–30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning.