800 resultados para Face recognition from video


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide range of applications, including security and multimedia information retrieval. The authors present a new approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union model (PUM). PUM is an approach for ignoring severely mismatched local features and focusing the recognition mainly on the reliable local features. It thereby improves the robustness while assuming no prior information about the corruption. We call the new approach the posterior union decision-based neural network (PUDBNN). The new PUDBNN model has been evaluated on three face image databases (XM2VTS, AT&T and AR) using testing images subjected to various types of simulated and realistic partial distortion and occlusion. The new system has been compared to other approaches and has demonstrated improved performance.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel pattern recognition scheme, global harmonic subspace analysis (GHSA), is developed for face recognition. In the proposed scheme, global harmonic features are extracted at the semantic scale to capture the 2-D semantic spatial structures of a face image. Laplacian Eigenmap is applied to discriminate faces in their global harmonic subspace. Experimental results on the Yale and PIE face databases show that the proposed GHSA scheme achieves an improvement in face recognition accuracy when compared with conventional subspace approaches, and a further investigation shows that the proposed GHSA scheme has impressive robustness to noise.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce an application for the detection of aberrant behaviour within home based environments, with a focus on repetitive actions, which may be present in instance of persons suffering from dementia. Video based analysis has been used to detect the motion of a person within a given scene in addition to tracking them over the time. Detection of repetitive actions has been based on the analysis of a person's trajectory using the principles of signal correlation. Along with the ability to detect repetitive motion the developed approach also has the ability to measure the amount of activity/inactivity within the scene during a given period of time. Our results showed that the developed approach had the ability to detect all patterns in the data set examined with an average accuracy of 96.67%. This work has therefore validated the proposed concept of video based analysis for the detection of repetitive activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work suggests that the human ear varies significantly between different subjects and can be used for identification. In principle, therefore, using ears in addition to the face within a recognition system could improve accuracy and robustness, particularly for non-frontal views. The paper describes work that investigates this hypothesis using an approach based on the construction of a 3D morphable model of the head and ear. One issue with creating a model that includes the ear is that existing training datasets contain noise and partial occlusion. Rather than exclude these regions manually, a classifier has been developed which automates this process. When combined with a robust registration algorithm the resulting system enables full head morphable models to be constructed efficiently using less constrained datasets. The algorithm has been evaluated using registration consistency, model coverage and minimalism metrics, which together demonstrate the accuracy of the approach. To make it easier to build on this work, the source code has been made available online.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of laughter in social interactions it remains little studied in affective computing. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received almost no attention. The aim of this study is twofold: first an investigation into observers' perception of laughter states (hilarious, social, awkward, fake, and non-laughter) based on body movements alone, through their categorization of avatars animated with natural and acted motion capture data. Significant differences in torso and limb movements were found between animations perceived as containing laughter and those perceived as nonlaughter. Hilarious laughter also differed from social laughter in the amount of bending of the spine, the amount of shoulder rotation and the amount of hand movement. The body movement features indicative of laughter differed between sitting and standing avatar postures. Based on the positive findings in this perceptual study, the second aim is to investigate the possibility of automatically predicting the distributions of observer's ratings for the laughter states. The findings show that the automated laughter recognition rates approach human rating levels, with the Random Forest method yielding the best performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a novel approach to face recognition which simultaneously tackles three combined challenges: 1) uneven illumination; 2) partial occlusion; and 3) limited training data. The new approach performs lighting normalization, occlusion de-emphasis and finally face recognition, based on finding the largest matching area (LMA) at each point on the face, as opposed to traditional fixed-size local area-based approaches. Robustness is achieved with novel approaches for feature extraction, LMA-based face image comparison and unseen data modeling. On the extended YaleB and AR face databases for face identification, our method using only a single training image per person, outperforms other methods using a single training image, and matches or exceeds methods which require multiple training images. On the labeled faces in the wild face verification database, our method outperforms comparable unsupervised methods. We also show that the new method performs competitively even when the training images are corrupted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnosis of developmental or congenital prosopagnosia (CP) involves self-report of everyday face recognition difficulties, which are corroborated with poor performance on behavioural tests. This approach requires accurate self-evaluation. We examine the extent to which typical adults have insight into their face recognition abilities across four studies involving nearly 300 participants. The studies used five tests of face recognition ability: two that tap into the ability to learn and recognise previously unfamiliar faces (the Cambridge Face Memory Test, CFMT, Duchaine & Nakayama, 2006 and a newly devised test based on the CFMT but where the study phases involve watching short movies rather than viewing static faces – the CFMT-Films) and three that tap face matching (Benton Facial Recognition Test, BFRT, Benton, Sivan, Hamsher, Varney, & Spreen, 1983; and two recently devised sequential face matching tests). Self-reported ability was measured with the 15-item Kennerknecht et al. (2008) questionnaire; two single-item questions assessing face recognition ability; and a new 77-item meta-cognition questionnaire). Overall, we find that adults with typical face recognition abilities have only modest insight into their ability to recognise faces on behavioural tests. In a fifth study, we assess self-reported face recognition ability in people with CP and find that some people who expect to perform poorly on behavioural tests of face recognition do indeed perform poorly. However, it is not yet clear whether individuals within this group of poor performers have greater levels of insight (i.e., into their degree of impairment) than those with more typical levels of performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.