983 resultados para Face detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Intrusion Detection System (IDS) is a common means of protecting networked systems from attack or malicious misuse. The deployment of an IDS can take many different forms dependent on protocols, usage and cost. This is particularly true of Wireless Intrusion Detection Systems (WIDS) which have many detection challenges associated with data transmission through an open, shared medium, facilitated by fundamental changes at the Physical and MAC layers. WIDS need to be considered in more detail at these lower layers than their wired counterparts as they face unique challenges. The remainder of this chapter will investigate three of these challenges where WiFi deviates significantly from that of wired counterparts:

• Attacks Specific to WiFi Networks: Outlining the additional threats which WIDS must account for: Denial of Service, Encryption Bypass and AP Masquerading attacks.

• The Effect of Deployment Architecture on WIDS Performance: Demonstrating that the deployment environment of a network protected by a WIDS can influence the prioritisation of attacks.

• The Importance of Live Data in WiFi Research: Investigating the different choices for research data sources with an emphasis on encouraging live network data collection for future WiFi research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter describes an experimental system for the recognition of human faces from surveillance video. In surveillance applications, the system must be robust to changes in illumination, scale, pose and expression. The system must also be able to perform detection and recognition rapidly in real time. Our system detects faces using the Viola-Jones face detector, then extracts local features to build a shape-based feature vector. The feature vector is constructed from ratios of lengths and differences in tangents of angles, so as to be robust to changes in scale and rotations in-plane and out-of-plane. Consideration was given to improving the performance and accuracy of both the detection and recognition steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper argues that biometric verification evaluations can obscure vulnerabilities that increase the chances that an attacker could be falsely accepted. This can occur because existing evaluations implicitly assume that an imposter claiming a false identity would claim a random identity rather than consciously selecting a target to impersonate. This paper shows how an attacker can select a target with a similar biometric signature in order to increase their chances of false acceptance. It demonstrates this effect using a publicly available iris recognition algorithm. The evaluation shows that the system can be vulnerable to attackers targeting subjects who are enrolled with a smaller section of iris due to occlusion. The evaluation shows how the traditional DET curve analysis conceals this vulnerability. As a result, traditional analysis underestimates the importance of an existing score normalisation method for addressing occlusion. The paper concludes by evaluating how the targeted false acceptance rate increases with the number of available targets. Consistent with a previous investigation of targeted face verification performance, the experiment shows that the false acceptance rate can be modelled using the traditional FAR measure with an additional term that is proportional to the logarithm of the number of available targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of visual perception are based on image representations in cortical area V1 and higher areas which contain many cell layers for feature extraction. Basic simple, complex and end-stopped cells provide input for line, edge and keypoint detection. In this paper we present an improved method for multi-scale line/edge detection based on simple and complex cells. We illustrate the line/edge representation for object reconstruction, and we present models for multi-scale face (object) segregation and recognition that can be embedded into feedforward dorsal and ventral data streams (the “what” and “where” subsystems) with feedback streams from higher areas for obtaining translation, rotation and scale invariance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The right occipital face area (rOFA) is known to be involved in face discrimination based on local featural information. Whether this region is involved in global, holistic stimulus processing is not known. Objective We used fMRI-guided transcranial magnetic stimulation (TMS) to investigate whether rOFA is causally implicated in stimulus detection based on holistic processing, by the use of Mooney stimuli. Methods Two studies were carried out: In Experiment 1, participants performed a detection task involving Mooney faces and Mooney objects; Mooney stimuli lack distinguishable local features and can be detected solely via holistic processing (i.e. at a global level) with top-down guidance from previously stored representations. Experiment 2 required participants to detect shapes which are recognized via bottom-up integration of local (collinear) Gabor elements and was performed to control for specificity of rightOFA's implication in holistic detection. Results In Experiment 1, TMS over rOFA and rLO impaired detection of all stimulus categories, with no category-specific effect. In Experiment 2, shape detection was impaired when TMS was applied over rLO but not over rOFA. Conclusions Our results demonstrate that rOFA is causally implicated in the type of top-down holistic detection required by Mooney stimuli and that such role is not face-selective. In contrast, rOFA does not appear to play a causal role in in detection of shapes based on bottom-up integration of local components, demonstrating that its involvement in processing non-face stimuli is specific for holistic processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results from an efficient approach to an automatic detection and extraction of human faces from images with any color, texture or objects in background, that consist in find isosceles triangles formed by the eyes and mouth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nasal gliomas are rare benign congenital midline tumors composed of heterotopic neuroglial tissue. They have potential for intracranial extension through a bony defect in the skull base. Neuroimaging is essential for identifying nasal lesions and for determining their exact location and any possible intracranial extension. Computed tomography is often the initial imaging study obtained because it provides good visualization of the bony landmarks of the skull base; it is not, however, well suited for soft tissue imaging. Magnetic resonance imaging has better soft tissue resolution and may be the best initial study in patients seen early in life because the anterior skull base consists of an unossified cartilage and may falsely appear as if there is a bony dehiscence on computed tomography. A frontal craniotomy approach is recommended if intracranial extension is identified, followed by a transnasal endoscopic approach for intranasal glioma. A case is presented of a huge fetal facial mass that was shown by ultrasound that protruded through the left nostril at 33 weeks of gestation. Computed tomography of the neonate suggested a transethmoidal encephalocele. Magnetic resonance imaging showed a huge mass occupying the nasopharynx and the nasal cavity and protruding externally to the face but ruled out bony discontinuity in the skull base and, therefore, any intracranial connection. The infant underwent an endoscopic resection of the mass via oral and nasal routes and pathologic examination revealed intranasal glioma. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Perceptual User Interfaces (PUIs) aim at facilitating human-computer interaction with the aid of human-like capacities (computer vision, speech recognition, etc.). In PUIs, the human face is a central element, since it conveys not only identity but also other important information, particularly with respect to the user’s mood or emotional state. This paper describes both a face detector and a smile detector for PUIs. Both are suitable for real-time interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dentinal cracks are occasionally observed at the cut root face after root-end resection in apical surgery. The objective of this ex vivo study was to evaluate and compare the efficiency of visual aids to identify root-end dentinal cracks.