953 resultados para FOOD-WEB STRUCTURE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The crabeater seal Lobodon carcinophaga is considered to be a key species in the krill-based food web of the Southern Ocean. Reliable estimates of the abundance of this species are necessary to allow the development of multispecies, predator–prey models as a basis for management of the krill fishery in the Southern Ocean. 2. A survey of crabeater seal abundance was undertaken in 1500 000 km2 of pack-ice off east Antarctica between longitudes 64–150° E during the austral summer of 1999/2000. Sighting surveys, using double observer line transect methods, were conducted from an icebreaker and two helicopters to estimate the density of seals hauled out on the ice in survey strips. Satellite-linked dive recorders were deployed on a sample of seals to estimate the probability of seals being hauled out on the ice at the times of day when sighting surveys were conducted. Model-based inference, involving fitting a density surface, was used to infer densities in the entire survey region from estimates in the surveyed areas. 3. Crabeater seal abundance was estimated to be between 0.7 and 1.4 million animals (with 95% confidence), with the most likely estimate slightly less than 1 million. 4. Synthesis and applications. The estimation of crabeater seal abundance in Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) management areas off east Antarctic where krill biomass has also been estimated recently provides the data necessary to begin extending from single-species to multispecies management of the krill fishery. Incorporation of all major sources of uncertainty allows a precautionary interpretation of crabeater abundance and demand for krill in keeping with CCAMLR’s precautionary approach to management. While this study focuses on the crabeater seal and management of living resources in the Southern Ocean, it has also led to technical and theoretical developments in survey methodology that have widespread potential application in ecological and resource management studies, and will contribute to a more fundamental understanding of the structure and function of the Southern Ocean ecosystem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The issue of whether loliginid squid can influence the average structure of marine ecosystems in a keystone role, i.e. a strong effect with relatively low biomass, has not yet been examined. Here, the diet of Loligo plei in inner shelf waters of the South Brazil Bight was examined, as a first step, based on the stomach contents of 2200 squid hand-jigged in shallow water (, 30 m) and taken as bycatch of shrimp trawlers in deeper water (30-100 m). Diet varied by size, season, and fishing zone. Stomachs were not empty in similar to 12%, with more empty during winter. The range of mantle lengths of squid caught by jigging (101-356 mm) appeared to differ from the squid trawled (30-236 mm), and the diet also differed. Food categories recorded in deeper water did not include amphipods or polychaetes, but in both fishing areas, fish were the most common prey. The fish prey identified included Trachurus lathami, small pelagic species, trichiurids, and Merluccius hubbsi. Demersal species, such as Ctenosciaena gracilicirrhus, and flatfish were also present. An ecosystem network model is updated through which a mixed-trophic impact matrix and ""keystoneness"" indicators were calculated. Loligo plei represents an important link between pelagic and demersal energy pathways, with high indices of keystoneness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper discusses the influence of fat type in the structure of ice cream, during its production by means of rheo-optical analysis. Fat plays an important part in the ice cream structure formation. It's responsible for the air stabilization, flavor release, texture and melting properties. The objective of this study was to use a rheological method to predict the fat network formation in ice cream with three types of fats (hydrogenated, low trans and palm fat). The three formulations were produced using the same methodology and ratio of ingredients. Rheo-optical measurements were taken before and after the ageing process, and the maximum compression force, overrun and melting profile were calculated in the finished product. The rheological analysis showed a better response from the ageing process from the hydrogenated fat, followed by the low trans fat. The formulation with palm fat showed greater differences between the three, where through the rheological tests a weaker destabilization of the fat globule membrane by the emulsifier was suggested. The overrun, texture measurements and meltdown profile has shown the distinction on the structure formation by the hydrogenated fat from the other fats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The past decade has seen the rise of high resolution datasets. One of the main surprises of analysing such data has been the discovery of a large genetic, phenotypic and behavioural variation and heterogeneous metabolic rates among individuals within natural populations. A parallel discovery from theory and experiments has shown a strong temporal convergence between evolutionary and ecological dynamics, but a general framework to analyse from individual-level processes the convergence between ecological and evolutionary dynamics and its implications for patterns of biodiversity in food webs has been particularly lacking. Here, as a first approximation to take into account intraspecific variability and the convergence between the ecological and evolutionary dynamics in large food webs, we develop a model from population genomics and microevolutionary processes that uses sexual reproduction, genetic-distance-based speciation and trophic interactions. We confront the model with the prey consumption per individual predator, species-level connectance and prey–predator diversity in several environmental situations using a large food web with approximately 25,000 sampled prey and predator individuals. We show higher than expected diversity of abundant species in heterogeneous environmental conditions and strong deviations from the observed distribution of individual prey consumption (i.e. individual connectivity per predator) in all the environmental conditions. The observed large variance in individual prey consumption regardless of the environmental variability collapsed species-level connectance after small increases in sampling effort. These results suggest (1) intraspecific variance in prey–predator interactions has a strong effect on the macroscopic properties of food webs and (2) intraspecific variance is a potential driver regulating the speed of the convergence between ecological and evolutionary dynamics in species-rich food webs. These results also suggest that genetic–ecological drift driven by sexual reproduction, equal feeding rate among predator individuals, mutations and genetic-distance-based speciation can be used as a neutral food web dynamics test to detect the ecological and microevolutionary processes underlying the observed patterns of individual and species-based food webs at local and macroecological scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, there has been a renewed interest in the ecological consequences of individual trait variation within populations. Given that individual variability arises from evolutionary dynamics, to fully understand eco-evolutionary feedback loops, we need to pay special attention to how standing trait variability affects ecological dynamics. There is mounting empirical evidence that intra-specific phenotypic variation can exceed species-level means, but theoretical models of multi-trophic species coexistence typically neglect individual-level trait variability. What is needed are multispecies datasets that are resolved at the individual level that can be used to discriminate among alternative models of resource selection and species coexistence in food webs. Here, using one the largest individual-based datasets of a food web compiled to date, along with an individual trait-based stochastic model that incorporates Approximate Bayesian computation methods, we document intra-population variation in the strength of prey selection by different classes or predator phenotypes which could potentially alter the diversity and coexistence patterns of food webs. In particular, we found that strongly connected individual predators preferentially consumed common prey, whereas weakly connected predators preferentially selected rare prey. Such patterns suggest that food web diversity may be governed by the distribution of predator connectivity and individual trait variation in prey selection. We discuss the consequences of intra-specific variation in prey selection to assess fitness differences among predator classes (or phenotypes) and track longer term food web patterns of coexistence accounting for several phenotypes within each prey and predator species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of food webs suggest that limited nonrandom dispersal can play an important role in structuring food webs. It is not clear, however, whether density-dependent dispersal fits empirical patterns of food webs better than density-independent dispersal. Here, we study a spatially distributed food web, using a series of population-dispersal models that contrast density-independent and density-dependent dispersal in landscapes where sampled sites are either homogeneously or heterogeneously distributed. These models are fitted to empirical data, allowing us to infer mechanisms that are consistent with the data. Our results show that models with density-dependent dispersal fit the α, β, and γ tritrophic richness observed in empirical data best. Our results also show that density-dependent dispersal leads to a critical distance threshold beyond which site similarity (i.e., β tritrophic richness) starts to decrease much faster. Such a threshold can also be detected in the empirical data. In contrast, models with density-independent dispersal do not predict such a threshold. Moreover, preferential dispersal from more centrally located sites to peripheral sites does not provide a better fit to empirical data when compared with symmetric dispersal between sites. Our results suggest that nonrandom dispersal in heterogeneous landscapes is an important driver that shapes local and regional richness (i.e., α and γ tritrophic richness, respectively) as well as the distance-decay relationship (i.e., β tritrophic richness) in food webs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Bacterial production was estimated by the 3H-leucine method (Kirchman et al. 1986, Kirchman 1993). At each depth, duplicate samples and a control were incubated with 20 nM L-[4,5 3H]-leucine. Samples were incubated in the dark, at in situ temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dataset is based on samples collected in the framework of the project SESAME, in the Ionian, Libyan and Aegean Sea during March- April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dataset is based on samples collected in the framework of the project SESAME, in the Ionian, Libyan and Aegean Sea during March- April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column. Bacterial production was estimated by the 3H-leucine method (Kirchman et al. 1986, Kirchman 1993). At each depth, duplicate samples and a control were incubated with 20 nM L-[4,5 3H]-leucine. Samples were incubated in the dark, at in situ temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments compared to the subsurface, implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of 'fresh' (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.