999 resultados para FLUORIDE NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold particle interaction with few-layer graphenes is of interest for the development of numerous optical nanodevices. The results of numerical studies of the coupling of gold nanoparticles with few-layer vertical graphene sheets are presented. The field strengths are computed and the optimum nanoparticle configurations for the formation of SERS hotpots are obtained. The nanoparticles are modeled as 8 nm diameter spheres atop 1.5 nm (5 layers) graphene sheet. The vertical orientation is of particular interest as it is possible to use both sides of the graphene structure and potentially double the number of particles in the system. Our results show that with the addition of an opposing particle a much stronger signal can be obtained as well as the particle separation can be controlled by the number of atomic carbon layers. These results provide further insights and contribute to the development of next-generation plasmonic devices based on nanostructures with hybrid dimensionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanochemical synthesis process has been used to synthesise aluminium nanoparticles. The aluminium is synthesised via a solid state chemical reaction which is initiated inside a ball mill at room temperature between either lithium (Li) or sodium (Na) metal which act as reducing agents with unreduced aluminium chloride (AlCl3). The reaction product formed consists of aluminium nanoparticles embedded within a by-product salt phase (LiCl or NaCl, respectively). The LiCl is washed with a suitable solvent resulting in aluminium (Al) nanoparticles which are not oxidised and are separated from the byproduct phase. Synthesis and washing was confirmed using X-ray diffraction (XRD). Nanoparticles were found to be ∼25–100nm from transmission electron microscopy (TEM) and an average size of 55nm was determined fromsmall angle X-ray scattering (SAXS) measurements. As synthesised Al/NaCl composites, washed Al nanoparticles, and purchased Al nanoparticles were deuterium (D2) absorption tested up to 2 kbar at a variety of temperatures, with no absorption detected within system resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. This investigation shows that the removal of fluoride using red mud is significantly improved if red mud is initially acidified. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡ SOH2+ and ≡ SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡ SOH2+ as the substitution of a fluoride ion doesn’t cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable synthesis of bimetallic AuxAg1-x alloyed nanoparticles and in situ monitoring of their plasmonic responses is presented. This is a new conceptual approach based on green and energy efficient, reactive, and highly-non-equilibrium microplasma chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric nanocomposites have been shown to possess superior electrical insulation properties compared to traditional filled-resins. However, poor dispersion uniformity and insufficient filler-matrix interaction can adversely affect insulation properties of nanocomposites. In this study, the use of plasma polymerization is proposed to coat poly(ethylene oxide) polymer layers on silica nanoparticles. It is shown that better dispersion is achieved and C-O bonds are created between the surface functional groups of the nanoparticles and the host epoxy polymer. Electrical insulation tests demonstrate that the nanocomposites with plasma polymerized silica nanoparticles feature better resistance against electrical treeing, lower dielectric constant, and also mitigated space charge built-up. Therefore, plasma polymerization offers a promising fabrication technique to further improve the synthesis of nanocomposite dielectrics with superior electrical insulation properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation and growth of highly crystalline silicon nanoparticles in atmospheric-pressure low-temperature microplasmas at gas temperatures well below the Si crystallization threshold and within a short (100 μs) period of time are demonstrated and explained. The modeling reveals that collision-enhanced ion fluxes can effectively increase the heat flux on the nanoparticle surface and this heating is controlled by the ion density. It is shown that nanoparticles can be heated to temperatures above the crystallization threshold. These combined experimental and theoretical results confirm the effective heating and structure control of Si nanoparticles at atmospheric pressure and low gas temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we improve the insulation performance of polymeric nano-dielectrics by using plasma pre-treatment on the filled nanoparticles. Non-equilibrium atmospheric-pressure plasma is employed to modify a commercial type of silane-coated SiO2 nanoparticles. The treated nanoparticles and the synthesized epoxy-based nanocomposites are characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The plasma-treated SiO2 nanoparticles can disperse uniformly and form strong covalent bonds with the molecules of the polymer matrix. Moreover, the electrical insulation properties of the synthesized nanocomposites are investigated. Results show that the nanocomposites with plasma-treated SiO2 nanoparticles obtain improved dielectric breakdown strength and extended endurance under intense electrical ageing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, atmospheric-pressure plasmas were applied to modify the surface of silane-coated silica nanoparticles. Subsequently nanocomposites were synthesized by incorporating plasma-treated nanoparticles into an epoxy resin matrix. Electrical testing showed that such novel dielectric materials obtained high partial discharge resistance, high dielectric breakdown strength, and enhanced endurance under highly stressed electric field. Through spectroscopic and microscopic analysis, we found surface groups of nanoparticles were activated and radicals were created after the plasma treatment. Moreover, a uniform dispersion of nanoparticles in nanocomposites was observed. It was expected that the improved dielectric performance of the nanocomposites can attribute to stronger chemical bonds formed between surface groups of plasma-treated nanoparticles and molecules in the matrix. This simple yet effective and environmentally friendly approach aims to synthesize the next generation of high-performance nanocomposite dielectric insulation materials for applications in high-voltage power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the application of cold atmospheric-pressure plasmas to modify silica nanoparticles to enhance their compatibility with polymer matrices. Thermally nonequilibrium atmospheric-pressure plasma is generated by a high-voltage radio frequency power source operated in the capacitively coupled mode with helium as the working gas. Compared to the pure polymer and the polymer nanocomposites with untreated SiO2, the plasma-treated SiO2–polymer nanocomposites show higher dielectric breakdown strength and extended endurance under a constant electrical stress. These improvements are attributed to the stronger interactions between the SiO2 nanoparticles and the surrounding polymer matrix after the plasma treatment. Our method is generic and can be used in the production of high-performance organic–inorganic functional nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticle contrast agents offer the potential to significantly improve existing methods of cancer diagnosis and treatment. Advantages include biocompatibility, selective accumulation in tumor cells, and reduced toxicity. Considerable research is underway into the use of nanoparticles as enhancement agents for radiation therapy and photodynamic therapy, where they may be used to deliver treatment agents, produce localized enhancements in radiation dose and selectively target tumor cells for localized damage. This paper reviews the current status of nanoparticles for cancer treatment and presents preliminary results of a pilot study investigating titanium dioxide nanoparticles for dual-mode enhancement of computed tomography (CT) imaging and kilovoltage radiation therapy. Although titanium dioxide produced noticeable image contrast enhancement in the CT scans, more sensitive detectors are needed to determine whether the nanoparticles can also produce localized dose enhancement for targeted radiation therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some important issues related to the self-organization in the arrays of nanoparticles on solid surfaces exposed to the low-temperature plasma are analysed and discussed. The available tools for the characterization of the size and position uniformity in nanoarrays are examined. The technique capable of revealing the realistic adsorbed atom and adsorbed radical capture zone pattern based on the surface physics is indicated as the most promising characterization tool. The processes responsible for the self-organization are analysed, the main driving forces of the self-organization are discussed, and possible ways to control the self-organization by controlling the plasma parameters are introduced. A view on the possible ways to further improve the methods of nanoarray characterization and self-organization is presented as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.