944 resultados para FGK STARS
Resumo:
We have begun a search for early-type stars towards the galactic centre which are potentially young objects situated within the inner few kiloparsecs of the disk. U and V (or I) band photographic photometry from the UK Schmidt Telescope has been obtained to identify the bluest candidates in nineteen Schmidt fields (centred close to the galactic centre). We have spectroscopically observed these targets for three fields with the FLAIR multi-fibre system to determine their spectral types. In particular; ten early B-type stars have been identified and equivalent width measurements of their Balmer and HeI lines have been used to estimate atmospheric parameters. These early-type objects have magnitudes in the range 11.5 less than or equal to V less than or equal to 16.0, and our best estimates of their distance (given probable highly variable reddening in this direction together with errors in the plate photometry) suggest that some of them originated close to (i.e R-g
Resumo:
As part of a programme to investigate spatial variations in the Galactic chemical composition, we have been searching for normal B-type stars and A-type supergiants near the Galactic center. During this search we have found eleven peculiar stars, and in some cases performed detailed abundance analyses of them which suggest that they may be at a post-AGB evolutionary stage.
Resumo:
Differential carbon abundances (based on the C II doublet at 6580 Angstrom) are presented for eight early type stars, towards the Galactic anti-centre. All the stars have similar atmospheric parameters with effective temperatures in the range 25000-29000 K and surface gravities between log g = 3.9-4.3 dex. The derived photospheric abundances vary by up to 0.6 dex, and with the exception of one star, RLWT-41, the differential abundances are found to be closely correlated with those of nitrogen. This implies that both elements may have been formed by similar mechanisms and that the lack of correlation between the nitrogen and oxygen abundances previously found in this sample is not directly due to CNO-processed core material being mixed to the stellar surface.
Resumo:
Context. NGC 346-013 is a peculiar double-lined eclipsing binary in the Small Magellanic Cloud (SMC) discovered by the VLT-FLAMES survey of massive stars.
Resumo:
The importance of partial redistribution (PRD) in the modelling of the Lyman a and Lyman ß emission lines of hydrogen in stellar atmospheres is examined using simple atmospheric models of a range of late-type stars. These models represent the subgiant Procyon (F5 IV-V), and the two giants ß Gem (K0 III) and a Tau (K5 III). These stars are selected to span a wide range of surface gravities: 1.25 <log g <4.00. The calculations are performed using the computer code MULTI with the modifications made by Hubeny & Lites. It is found that PRD effects are highly significant, both in the direct prediction of the Lyman line profiles and in the application of hydrostatic equilibrium to calculate the atmospheric electron density in static atmospheric models.
Resumo:
The effect of photon frequency redistribution by line branching on mass-loss rates for hot luminous stars is investigated. Monte Carlo simulations are carried out for a range of OB star models which show that previous mass-loss calculations which neglect non-resonance line scattering overestimate mass-loss rates for luminous O stars by ~20 per cent. For luminous B stars the effect is somewhat larger, typically ~50 per cent. A Wolf-Rayet star model is used to investigate line branching in the strong wind limit. In this case the effect of line branching is much greater, giving mass-loss rates that are smaller by a factor ~3 from computations which neglect branching.
Resumo:
The Herbig Ae/Be stars are intermediate mass pre-main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X-shooter to address this issue from a multi-wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near-infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 µm line. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We present the DONUTS autoguiding algorithm, designed to fix stellar positions at the sub-pixel level for high-cadence time-series photometry, and also capable of autoguiding on defocused stars. DONUTS was designed to calculate guide corrections from a series of science images and recentre telescope pointing between each exposure. The algorithm has the unique ability of calculating guide corrections from undersampled to heavily defocused point spread functions. We present the case for why such an algorithm is important for high precision photometry and give our results from off and on-sky testing. We discuss the limitations of DONUTS and the facilities where it soon will be deployed.
Resumo:
Stellar activity, such as starspots, can induce radial velocity (RV) variations that can mask or even mimic the RV signature of orbiting exoplanets. For this reason RV exoplanet surveys have been unsuccessful when searching for planets around young, active stars and are therefore failing to explore an important regime which can help to reveal how planets form and migrate. This paper describes a new technique to remove spot signatures from the stellar line-profiles of moderately rotating, active stars (v sin i ranging from 10 to 50 km s(-1)). By doing so it allows planetary RV signals to be uncovered. We used simulated models of a G5V type star with differing dark spots on its surface along with archive data of the known active star HD 49933 to validate our method. The results showed that starspots could be effectively cleaned from the line-profiles so that the stellar RV jitter was reduced by more than 80 per cent. Applying this procedure to the same models and HD 49933 data, but with fake planets injected, enabled the effective removal of starspots so that Jupiter mass planets on short orbital periods were successfully recovered. These results show that this approach can be useful in the search for hot-Jupiter planets that orbit around young, active stars with a v sin i of similar to 10-50 km/s.
Resumo:
There has been a long-standing discussion in the literature as to whether core accretion or disk instability is the dominant mode of planet formation. Over the last decade, several lines of evidence have been presented showing that core accretion is most likely the dominant mechanism for the close-in population of planets probed by radial velocity and transits. However, this does not by itself prove that core accretion is the dominant mode for the total planet population, since disk instability might conceivably produce and retain large numbers of planets in the far-out regions of the disk. If this is a relevant scenario, then the outer massive disks of B-stars should be among the best places for massive planets and brown dwarfs to form and reside. In this study, we present high-contrast imaging of 18 nearby massive stars of which 15 are in the B2-A0 spectral-type range and provide excellent sensitivity to wide companions. By comparing our sensitivities to model predictions of disk instability based on physical criteria for fragmentation and cooling, and using Monte Carlo simulations for orbital distributions, we find that ~85% of such companions should have been detected in our images on average. Given this high degree of completeness, stringent statistical limits can be set from the null-detection result, even with the limited sample size. We find that
Resumo:
We obtained high-resolution, high-contrast optical imaging in the Sloan Digital Sky Survey i′ band with the LuckyCam camera mounted on the 2.56 m Nordic Optical Telescope, to search for faint stellar companions to 16 stars harbouring transiting exoplanets. The Lucky imaging technique uses very short exposures to obtain near diffraction-limited images yielding sub-arcsecond sensitivity, allowing us to search for faint stellar companions within the seeing disc of the primary planet host. Here, we report the detection of two candidate stellar companions to the planet host TrES-1 at separations <6.5 arcsec and we confirm stellar companions to CoRoT-2, CoRoT-3, TrES-2, TrES-4 and HAT-P-7 already known in the literature. We do not confirm the candidate companions to HAT-P-8 found via Lucky imaging by Bergfors et al., however, most probably because HAT-P-8 was observed in poor seeing conditions. Our detection sensitivity limits allow us to place constraints on the spectral types and masses of the putative bound companions to the planet host stars in our sample. If bound, the stellar companions identified in this work would provide stringent observational constraints to models of planet formation and evolution. In addition, these companions could affect the derived physical properties of the exoplanets in these systems.
Resumo:
The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography an indirect imaging technique that can be used to map the Roche-lobe-filling secondary star. The review begins with a description of the basic principles that underpin Roche tomography including methods for determining the binary system parameters. Noise propagation onto Roche tomograms is also covered. Finally the review concludes with a look at the main scientific highlights to date and the future prospects for Roche tomography
Resumo:
Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.
Resumo:
Financial and cultural aspects of corporate giving by UK and non-UK companies in response to the December 2004 South Asia Tsunami disaster are explored in this article. Literatures on corporate giving rationales, concepts of disaster and donor activity in disasters provide an underpinning. The article seeks to make connections between this high profile if short-lived business giving and the funding of the arts that is sought from business; and to draw tentative lessons for arts funding when seeking business support. The giving accounts in the wake of the Tsunami from a non-probability sample of 56 UK companies and 16 non-UK companies were examined. Reported online to the UK charity Business in the Community, these accounts were accessed in February 2005 and scrutinized thematically. Concurrently, company financial profiles to accompany giving figures were constructed. Although linkages between donation levels and financial performance were lacking, emerging themes included the role of employees, influencing company giving and creating a climate of expectation of firms' contributions. These developments may have important implications for business funding for the arts, where leading philanthropists are prominent as individuals in the giving landscapes; but employees' collective involvement is not marked. Alternatively, cultivation of employees as would-be donors, indirectly via their firms, may be a more secure, if lower level route to funding for some arts organizations than dependence on high profile business leaders. The article considers alternative scenarios for company giving in disaster contexts, including as a sustained and lasting giving theme or as company support as a ‘one-off’ event, rock-star style. The likely development of employee power as a key element in company giving is explored; and its wider meanings for funding in arts settings, (where the giver as rock star heroine/hero is also prominent) are considered.
Resumo:
The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\to$ N (also, CO $\to$ C $\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, C$_n$N ($n$=1, 3, 5), C$_n$N$^-$ ($n$=1, 3, 5), HC$_n$N ($n$=1, 3, 5, 7, 9), H$_2$CN and CH$_2$CN. The chemistry of many species is directly or indirectly affected by the photodissociation of N$_2$ and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N$_2$ and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.