966 resultados para FERROELECTRIC DOMAINS
Resumo:
In the root-colonizing biocontrol strain CHA0 of Pseudomonas fluorescens, cell density-dependent synthesis of extracellular, plant-beneficial secondary metabolites and enzymes is positively regulated by the GacS/GacA two-component system. Mutational analysis of the GacS sensor kinase using improved single-copy vectors showed that inactivation of each of the three conserved phosphate acceptor sites caused an exoproduct null phenotype (GacS-), whereas deletion of the periplasmic loop domain had no significant effect on the expression of exoproduct genes. Strain CHA0 is known to synthesize a solvent-extractable extracellular signal that advances and enhances the expression of exoproduct genes during the transition from exponential to stationary growth phase when maximal exoproduct formation occurs. Mutational inactivation of either GacS or its cognate response regulator GacA abolished the strain's response to added signal. Deletion of the linker domain of the GacS sensor kinase caused signal-independent, strongly elevated expression of exoproduct genes at low cell densities. In contrast to the wild-type strain CHA0, the gacS linker mutant and a gacS null mutant were unable to protect tomato plants from crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici in a soil-less microcosm, indicating that, at least in this plant-pathogen system, there is no advantage in using a signal-independent biocontrol strain.
Resumo:
Una revisión sistemática de la organización compleja de los dominios cognitivos humanos y su heredabilidad. Antecedentes: se ha propuesto que la estructura de la cognición humana respondería a un sistema jerárquico, donde las secuencias propias a una acción se organizarían desde sub-unidades de análisis hasta funciones de nivel superior relativamente complejas. Esta estructura organizacional estaría reflejada en las representaciones neurales que subyacen al comportamiento humano, así como también en sus sustratos genéticos. El objetivo del presente estudio fue explorar la posible organización jerárquica de las influencias genéticas subyacentes a los dominios cognitivos humanos. Método: se revisaron treinta y cuatro estudios de la heredabilidad de la cognición en muestras de la población general, que incluyeron medidas de inteligencia, habilidades verbales y manipulativas, memoria, memoria de trabajo y velocidad de procesamiento. Resultados: diversos dominios cognitivos mostraron distintas proporciones de influencias genéticas, con las mayores estimaciones de heredabilidad halladas para las funciones cognitivas de nivel superior y las menores estimaciones para las funciones de orden medio o inferior. Conclusiones: tomando como referencia los conocimientos actuales acerca del neurodesarrollo humano, las contribuciones genéticas de las habilidades cognitivas parecen organizarse paralelamente al crecimiento ontogénico del cerebro. Se discuten estos resultados en relación a la interacción entre el control genético de las funciones cognitivas y sus influencias ambientales.
Resumo:
Bone morphogenetic proteins (Bmps) regulate the expression of the proneural gene Atoh1 and the generation of hair cells in the developing inner ear. The present work explored the role of Inhibitor of Differentiation genes (Id1-3) in this process. The results show that Id genes are expressed in the prosensory domains of the otic vesicle, along with Bmp4 and Bmp7. Those domains exhibit high levels of the phosphorylated form of Bmp-responding R-Smads (P-Smad1,5,8), and of Bmp-dependent Smad transcriptional activity as shown by the BRE-tk-EGFP reporter. Increased Bmp signaling induces the expression of Id1-3 along with the inhibition of Atoh1. Conversely, the Bmp antagonist Noggin or the Bmp-receptor inhibitor Dorsomorphin elicit opposite effects, indicating that Bmp signaling is necessary for Id expression and Atoh1 regulation in the otocyst. The forced expression of Id3 is sufficient to reduce Atoh1 expression and to prevent the expression of hair cell differentiation markers. Together, these results suggest that Ids are part of the machinery that mediates the regulation of hair cell differentiation exerted by Bmps. In agreement with that, during hair cell differentiation Bmp4 expression, P-Smad1,5,8 levels and Id expression are downregulated from hair cells. However, Ids are also downregulated from the supporting cells which contrarily to hair cells exhibit high levels of Bmp4 expression, P-Smad1,5,8, and BRE-tk-EGFP activity, suggesting that in these cells Ids escape from Bmp/Smad signaling. The differential regulation of Ids in time and space may underlie the multiple functions of Bmp signaling during sensory organ development.
Resumo:
TWEAK (TNF homologue with weak apoptosis-inducing activity) and Fn14 (fibroblast growth factor-inducible protein 14) are members of the tumor necrosis factor (TNF) ligand and receptor super-families. Having observed that Xenopus Fn14 cross-reacts with human TWEAK, despite its relatively low sequence homology to human Fn14, we examined the conservation in tertiary fold and binding interfaces between the two species. Our results, combining NMR solution structure determination, binding assays, extensive site-directed mutagenesis and molecular modeling, reveal that, in addition to the known and previously characterized β-hairpin motif, the helix-loop-helix motif makes an essential contribution to the receptor/ligand binding interface. We further discuss the insight provided by the structural analyses regarding how the cysteine-rich domains of the TNF receptor super-family may have evolved over time. DATABASE: Structural data are available in the Protein Data Bank/BioMagResBank databases under the accession codes 2KMZ, 2KN0 and 2KN1 and 17237, 17247 and 17252. STRUCTURED DIGITAL ABSTRACT: TWEAK binds to hFn14 by surface plasmon resonance (View interaction) xeFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction) TWEAK binds to xeFn14 by surface plasmon resonance (View interaction) hFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction).
Resumo:
Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.
Resumo:
Este estudio ex post facto analiza las relaciones entre las dimensiones y facetas del NEO-PI-R y los 14 trastornos de personalidad del MCMI-III en una muestra no clínica española (N = 674). Se exploran las diferencias y similitudes con los resul- tados de Dyce y O’Connor en una muestra americana con los mismos instrumentos. Como se esperaba, los análisis factoriales de facetas reteniendo cinco factores mostraron un modelo de relaciones muy similar entre ambas muestras, con un coeficiente de la congruencia total de 0,92, y coeficientes de congruencia de factor aceptables, salvo para el factor Apertura (0,68). En consonancia con las predicciones de Widiger y Widiger et al. los porcentajes de correlaciones significativas estaban alrededor de 60% en ambas muestras, y la mayoría coincidían. El análisis de regresión múltiple con dimensiones también reveló un gran parecido entre los resultados americanos y españoles, Neuroticismo fue el predictor más relacionado con los trastornos de personalidad. Se encontraron diferencias en las regresiones por facetas, aunque la varianza explicada fue prácticamente la misma que en las dimensiones. Se discute la validez transcultural y el valor predictivo del NEO-PI-R sobre los trastornos de personalidad del MCMI-III, junto con las ventajas relativas de las facetas sobre las dimensiones.
Resumo:
Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.
Resumo:
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.
Resumo:
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.
Resumo:
Work-life issues have become a major concern across Western societies with the objective to promote women's careers and well-being. However, despite growing attempts to increase the number of women in senior management positions in European countries, such as Switzerland, they remain highly underrepresented. Inspired from the cultural approach in psychology, this article focuses on these women's concrete everyday life to understand how they articulate different life domains and how this influences their subjective well-being. A narrative approach based on reflexivity is adopted to analyze women's activity. Results show meaning intertwinements between life priorities that are often conflicting. Two psychological functions are identified: the feeling of control and the letting go of control. Each of these contributes to women's subjective well-being through the use of diversified supports, but their structuring roles appear only in relation to one another. Results are discussed in the light of existing literature and of their implications.
Resumo:
BACKGROUND: quality of life (QoL) is a subjective perception whose components may vary in importance between individuals. Little is known about which domains of QoL older people deem most important. OBJECTIVE: this study investigated in community-dwelling older people the relationships between the importance given to domains defining their QoL and socioeconomic, demographic and health status. METHODS: data were compiled from older people enrolled in the Lc65+ cohort study and two additional, population-based, stratified random samples (n = 5,300). Principal components analysis (PCA) was used to determine the underlying domains among 28 items that participants defined as important to their QoL. The components extracted were used as dependent variables in multiple linear regression models to explore their associations with socioeconomic, demographic and health status. RESULTS: PCA identified seven domains that older persons considered important to their QoL. In order of importance (highest to lowest): feeling of safety, health and mobility, autonomy, close entourage, material resources, esteem and recognition, and social and cultural life. A total of six and five domains of importance were significantly associated with education and depressive symptoms, respectively. The importance of material resources was significantly associated with a good financial situation (β = 0.16, P = 0.011), as was close entourage with living with others (β = 0.20, P = 0.007) and as was health and mobility with age (β = -0.16, P = 0.014). CONCLUSION: the importance older people give to domains of their QoL appears strongly related to their actual resources and experienced losses. These findings may help clinicians, researchers and policy makers better adapt strategies to individuals' needs.
Resumo:
Members of the Src family of kinases (SFKs) are non-receptor tyrosine kinases involved in numerous signal transduction pathways. The catalytic, SH3 and SH2 domains are attached to the membrane-anchoring SH4 domain through the intrinsically disordered"Unique" domains, which exhibit strong sequence divergence among SFK members. In the last decade, structural and biochemical studies have begun to uncover the crucial role of the Unique domain in the regulation of SFK activity. This mini-review discusses what is known about the phosphorylation events taking place on the SFK Unique domains, and their biological relevance. The modulation by phosphorylation of biologically relevant inter- and intra- molecular interactions of Src, as well as the existence of complex phosphorylation/dephosphorylation patterns observed for the Unique domain of Src, reinforces the important functional role of the Unique domain in the regulation mechanisms of the Src kinases and, in a wider context, of intrinsically disordered regions in cellular processes.
Resumo:
DNA cytosine methylation has been demonstrated to be a central epigenetic modification that has essential roles in a myriad of cellular processes. Some examples of these include gene regulation, DNA-protein interactions, cellular differentiation, X-inactivation, maintenance of genome integrity by suppressing transposable elements and viruses, embryogenesis, genomic imprinting and tumourigenesis. This list is increasingly growing thanks to recent advances in genome-wide technologies, like Whole Genome Bisulfite Sequencing (WGBS-Seq). The development of this technology in research has allowed the identification of new features of the DNA methylation landscape that was not possible using previous technologies, like Partially Methylated Domains (PMDs). PMDs have been found in several cell lines, as well as in both healthy and cancer primary samples. They have been described as regions with high variability in methylation levels across individual CpG sites and intermediate methylation levels on average with respect to the genome. Here, we performed an extensive search of PMDs in a big dataset of different haematopoietic primary cells from both myeloid and lymphoid lineages. We found and characterized significant PMDs in plasma B cells, confirming that PMDs are a phenomenon that is restricted to certain differentiated cells. Additionally, we found loci aberrantly hypomethylated in a myeloma sample which overlapped with plasma B cell PMDs. Genome-wide comparison of the myeloma and plasma B cell sample revealed that this is probably also the case for other loci.
Resumo:
Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine-cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP