947 resultados para FE-57
Resumo:
The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a (Fe2S2)-S-III cluster in place. In contrast, the other proteins are isolated in colourless forms, although a (Fe2S2)-S-III cluster may be assembled in the C42G protein via incubation with Fe-III and sulfide. The four mutant proteins were isolated as stable mononuclear Hg-II forms which were converted to unstable mononuclear Fe-III preparations that contain both holo and apo protein. The Fe-III systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe-III form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe-III form in which a ligand appears to be supplied by the protein chain. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-0020355-1.
Resumo:
Neutron activation analysis was applied to assess trace elements concentrations in head hair from healthy elderly people living in the Sao Paulo metropolitan area. Concentrations of As, Br, Ca, Cl, Co, Cr, Cu, Fe, K, La, Mn, Na, Sb, Se and, Zn were determined. Comparisons were made between the results obtained for dyed and non-dyed hair as well as for hair from females and males of two different age groups. The results were also compared with range values established by clinical laboratories and published data.
Resumo:
In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem (TM), based on dextrancoated Fe(3)O(4) nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g=2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 +/- 0.6) min measured by EPR and (12.6 +/- 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
Biocompatible superparamagnetic iron oxide nanoparticles of magnetite coated with dextran were magnetically characterized using the techniques of SQUID (superconducting quantum interference device) magnetometry and ferromagnetic resonance (FMR). The SQUID magnetometry characterization was performed by isothermal measurements under applied magnetic field using the methods of zero-field-cooling (ZFC) and field-cooling (FC). The magnetic behavior of the nanoparticles indicated their superparamagnetic nature and it was assumed that they consisted exclusively of monodomains. The transition to a blocked state was observed at the temperature T(B) = (43 +/- 1) K for frozen ferrofluid and at (52 +/- 1) K for the lyophilized ferrofluid samples. The FMR analysis showed that the derivative peak-to-peak linewidth (Delta H(PP)), gyromagnetic factor (g), number of spins (N(S)), and spin-spin relaxation time (T(2)) were strongly dependent on both temperature and super-exchange interaction. This information is important for possible nanotechnological applications, mainly those which are strongly dependent on the magnetic parameters.
Resumo:
The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.
Resumo:
Purpose: To evaluate in vitro the solubility of the Epiphany endodontic filling material Epiphany (Pentron Clinical Technologies, Wallingford, CT) prepared with its resinous solvent. Methods: The specimens were prepared in the following experimental conditions: (1) GI, epiphany without photoactivation; (2) GII, Epiphany prepared with resinous solvent without photoactivation; (3) Gill, Epiphany followed by photoactivation; and (4) GIV, Epiphany prepared with resinous solvent followed by photoactivation. Ten specimens of each group were obtained from Teflon molds with 80% reduction in volume of the specimen`s dimensions based on American National Standard Institute/American Dental Association (ANSI/ADA) Specification No. 57. The samples were weighted and immersed in distilled water for 7 days. After this period, they were removed, dried, and weighed again. Solubility was calculated by using samples weight loss (%). The immersion liquid was evaluated through atomic absorption spectrometry. Results: The sealers without photoactivation were statistically similar (p > 0.05) between themselves (GI = 6.93% and GII = 6.39%) and different from the uncured sealers, which were statistically different between themselves (p < 0.05) (GIII = 3.56% and GIV = 0.47%). Only the Epiphany sealer prepared with resinous solvent followed by photoactivation presented solubility values within ANSI/ADA requirements, liberating the following amounts of ions: 114.43 mu g of Ca(2+)/mL, 2.4 mu g of Mg(2+)/mL, 0.33 mu g of Fe(2+)/mL, 0.11 mu 4g of Zn(2+)/mL, 1.31 mu g of Ni(2+)/mL, and 7.1 mu g of Na(+)/mL. Conclusion: The association of resinous solvent to the Epiphany sealer followed by photoactivation resulted in a filling material with low solubility and expressive liberation of calcium ions. (J Endod 2009;35:715-718)
Resumo:
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled. Metal ion analysis shows an excess of iron over manganese. Low temperature EPR spectra reveal only resonances characteristic of high spin Fe(III) centers (Fe(III)-apo and Fe(III)-Zn(II)) and adventitious Cu(II) centers. There were no resonances from either Mn(II) or binuclear Fe-Mn centers. Together with a comparison of spectral properties and sequence homologies between known purple acid phosphatases, the enzymatic and spectroscopic data strongly indicate the presence of catalytic Fe(III)-Mn(II) centers in the active site of the sweet potato enzyme. Because of the strong antiferromagnetism it is likely that the metal ions in the sweet potato enzyme are linked via a mu -oxo bridge, in contrast to other known purple acid phosphatases in which a mu -hydroxo bridge is present. Differences in metal ion composition and bridging may affect substrate specificities leading to the biological function of different purple acid phosphatases.
Resumo:
Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The literature indicated that Cu rich Cu-Cr and Cu-Fe alloys have been thoroughly investigated. A number of commercial alloys have been developed and these are used for a variety of applications requiring combinations of high-strength, high-conductivity and resistance to softening. Little evidence was found in the literature that the Cu rich corner of the Cu-Fe-Cr system had previously been investigated for the purpose of developing high-strength, high-conductivity copper alloys resistant to softening. The aim of these present investigations was to explore the possibility that new alloys could be developed that combined the properties of both sets of alloys, ie large precipitation hardening response combined with the ability to stabilise cold worked microstructures to high temperatures while at the same maintain high electrical conductivity. To assess the feasibility of this goal the following alloys were chosen for investigation: Cu-0.7wt%Cr-0.3wt%Fe, Cu-0.7wt%Cr-0.8wt%Fe, Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the mechanical property investigation which indicated that the Cu-0.7wt%Cr-0.3wt%Fe, and Cu-0.7wt%Cr-2.0wt%Fe alloys were worthy of further investigation. (C) 2001 Kluwer Academic Publishers.