989 resultados para FADING CHANNELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the impact of transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decode-and-forward (DF) relaying in Nakagami-m fading channels. We select a single transmit antenna at the secondary transmitter which maximizes the receive signal-to-noise ratio (SNR) and combine a subset of receive antennas with the largest SNRs at the secondary receiver. In an effort to assess the performance, we first derive the probability density function and cumulative distribution function of the end-to-end SNR using the moment generating function. We then derive new exact closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expression for the high SNR approximation of the ergodic capacity, we gather deep insights into the high SNR slope and the power offset. Our results show that the high SNR slope is 1/2 under the proportional interference power constraint. Under the fixed interference power constraint, the high SNR slope is zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the end-to-end performance of randomized distributed space-time codes with complex Gaussian distribution, when employed in a wireless relay network. The relaying nodes are assumed to adopt a decode-and-forward strategy and transmissions are affected by small and large scale fading phenomena. Extremely tight, analytical approximations of the end-to-end symbol error probability and of the end-to-end outage probability are derived and successfully validated through Monte-Carlo simulation. For the high signal-to-noise ratio regime, a simple, closed-form expression for the symbol error probability is further provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the physical layer secrecy performance of a single-input single-output system that consists of single antenna devices and operates in the presence of a single antenna passive eavesdropper over dissimilar fading channels. In particular, we consider two scenarios in terms of dissimilar fading channel arrangements: the legal/illegal channels are subject to Rayleigh/Rician fading, respectively; and the legal/illegal channels are subject to Rician/Rayleigh fading, respectively. Specifically, analytical expressions for the probability of the existence of a non-zero secrecy capacity and the secrecy outage probability are derived by using statistical characteristics of the signal-to-noise ratio. Numerical results are provided for selected scenarios to illustrate applications of the developed analytical expressions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyze the performance of cognitive amplify-and-forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi-antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information-assisted AF mode, and the signals undergo independent Nakagami-m fading. In particular, closed-form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami-m fading are presented. More importantly, asymptotic closed-form expressions for the outage probability and SER are derived. These tractable closed-form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a thorough performance analysis of dual-hop cognitive amplify-and-forward (AF) relaying networks under spectrum-sharing mechanism over independent non-identically distributed (i.n.i.d.) 􀀀 fading channels. In order to guarantee the quality-of-service (QoS) of primary networks, both maximum tolerable peak interference power Q at the primary users (PUs) and maximum allowable transmit power P at secondary users (SUs) are considered to constrain transmit power at the cognitive transmitters. For integer-valued fading parameters, a closed-form lower bound for the outage probability (OP) of the considered networks is obtained. Moreover, assuming arbitrary-valued fading parameters, the lower bound in integral form for the OP is derived. In order to obtain further insights on the OP performance, asymptotic expressions for the OP at high SNRs are derived, from which the diversity/coding gains and the diversity-multiplexing gain tradeoff (DMT) of the secondary network can be readily deduced. It is shown that the diversity gain and also the DMT are solely determined by the fading parameters of the secondary network whereas the primary network only affects the coding gain. The derived results include several others available in previously published works as special cases, such as those for Nakagami-m fading channels. In addition, performance evaluation results have been obtained by Monte Carlo computer simulations which have verified the accuracy of the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, novel closed-form expressions for the level crossing rate and average fade duration of κ − μ shadowed fading channels are derived. The new equations provide the capability of modeling the correlation between the time derivative of the shadowed dominant and multipath components of the κ − μ shadowed fading envelope. Verification of the new equations is performed by reduction to a number of known special cases. It is shown that as the shadowing of the resultant dominant component decreases, the signal crosses lower threshold levels at a reduced rate. Furthermore, the impact of increasing correlation between the slope of the shadowed dominant and multipath components similarly acts to reduce crossings at lower signal levels. The new expressions for the second-order statistics are also compared with field measurements obtained for cellular device-to-device and body-centric communication channels, which are known to be susceptible to shadowed fading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectrum sensing is a key function of cognitive radio systems. Sensing performance is determined by three main factors including the wireless channel between the primary system and the cognitive radio nodes, the detection threshold, and the sensing time. In this letter a closed-form expression for the average probability of detection for energy detection based spectrum sensing over two-wave with diffuse power fading channels is derived. This expression is then used to optimize the detection threshold for cognitive radio nodes, which operate in confined structures that exhibit worse than Rayleigh fading conditions. Such fading conditions can represent a behavioral model of cognitive machine-to-machine systems deployed in enclosed structures such as in-vehicular environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This article investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse than Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing as well as square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe and extreme fading conditions, and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. Our results indicate that TWDP fading conditions can significantly degrade the sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable us to identify the limits of ED-based spectrum sensing and quantify the trade-offs between detection performance and energy efficiency for cognitive radio systems deployed within confined environments such as in-vehicular wireless networks.