982 resultados para Eye lens Protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The serine-threonine kinase LKB1 regulates cell polarity from Caenorhabditis elegans to man. Loss of lkb1 leads to a cancer predisposition, known as Peutz-Jeghers Syndrome. Biochemical analysis indicates that LKB1 can phosphorylate and activate a family of AMPK- like kinases, however, the precise contribution of these kinases to the establishment and maintenance of cell polarity is still unclear. Recent studies propose that LKB1 acts primarily through the AMP kinase to establish and/or maintain cell polarity. To determine whether this simple model of how LKB1 regulates cell polarity has relevance to complex tissues, we examined lkb1 mutants in the Drosophila eye. We show that adherens junctions expand and apical, junctional, and basolateral domains mix in lkb1 mutants. Surprisingly, we find LKB1 does not act primarily through AMPK to regulate cell polarity in the retina. Unlike lkb1 mutants, ampk retinas do not show elongated rhabdomeres or expansion of apical and junctional markers into the basolateral domain. In addition, nutrient deprivation does not reveal a more dramatic polarity phenotype in lkb1 photoreceptors. These data suggest that AMPK is not the primary target of LKB1 during eye development. Instead, we find that a number of other AMPK-like kinase, such as SIK, NUAK, Par-1, KP78a, and KP78b show phenotypes similar to weak lkb1 loss of function in the eye. These data suggest that in complex tissues, LKB1 acts on an array of targets to regulate cell polarity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In vitro studies in porcine eyes have demonstrated a good correlation between induced intraocular pressure variations and corneal curvature changes, using a contact lens with an embedded microfabricated strain gauge. Continuous 24 hour-intraocular pressure (IOP) monitoring to detect large diurnal fluctuation is currently an unmet clinical need. The aims of this study is to evaluate precision of signal transmission and biocompatibility of 24 hour contact lens sensor wear (SENSIMED Triggerfish®) in humans. Methods: After full eye examination in 10 healthy volunteers, a 8.7 mm radius contact lens sensor and an orbital bandage containing a loop antenna were applied and connected to a portable recorder. Best corrected visual acuity and position, lubrication status and mobility of the sensor were assessed after 5 and 30 minutes, 4, 7 and 24 hours. Subjective comfort was scored and activities documented in a logbook. After sensor removal full eye examination was repeated, and the registration signal studied. Results: The comfort score was high and did not fluctuate significantly, except at the 7 hour-visit. The mobility of the contact lens was minimal but its lubrication remained good. Best corrected visual acuity was significantly reduced during the sensor wear and immediately after its removal. Three patients developed mild corneal staining. In all but one participant we obtained a registration IOP curve with visible ocular pulse amplitude. Conclusions: This 24 hour-trial confirmed the functionality and biocompatibility of SENSIMED Triggerfish® wireless contact lens sensor for IOP-fluctuation monitoring in volunteers. Further studies with a range of different contact lens sensor radii are indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha1B-adrenergic receptor (alpha1BAR), its truncated mutant T368, different G protein-coupled receptor kinases (GRK) and arrestin proteins were transiently expressed in COS-7 or HEK293 cells alone and/or in various combinations. Coexpression of beta-adrenergic receptor kinase (betaARK) 1 (GRK2) or 2 (GRK3) could increase epinephrine-induced phosphorylation of the wild type alpha1BAR above basal as compared to that of the receptor expressed alone. On the other hand, overexpression of the dominant negative betaARK (K220R) mutant impaired agonist-induced phosphorylation of the receptor. Overexpression of GRK6 could also increase epinephrine-induced phosphorylation of the receptor, whereas GRK5 enhanced basal but not agonist-induced phosphorylation of the alpha1BAR. Increasing coexpression of betaARK1 or betaARK2 resulted in the progressive attenuation of the alpha1BAR-mediated response on polyphosphoinositide (PI) hydrolysis. However, coexpression of betaARK1 or 2 at low levels did not significantly impair the PI response mediated by the truncated alpha1BAR mutant T368, lacking the C terminus, which is involved in agonist-induced desensitization and phosphorylation of the receptor. Similar attenuation of the receptor-mediated PI response was also observed for the wild type alpha1BAR, but not for its truncated mutant, when the receptor was coexpressed with beta-arrestin 1 or beta-arrestin 2. Despite their pronounced effect on phosphorylation of the alpha1BAR, overexpression of GRK5 or GRK6 did not affect the receptor-mediated response. In conclusion, our results provide the first evidence that betaARK1 and 2 as well as arrestin proteins might be involved in agonist-induced regulation of the alpha1BAR. They also identify the alpha1BAR as a potential phosphorylation substrate of GRK5 and GRK6. However, the physiological implications of GRK5- and GRK6-mediated phosphorylation of the alpha1BAR remain to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cone photoreceptors mediate visual acuity under daylight conditions, so loss of cone-mediated central vision of course dramatically affects the quality of life of patients suffering from retinal degeneration. Therefore, promoting cone survival has become the goal of many ocular therapies and defining the stage of degeneration that still allows cell rescue is of prime importance. Using the Rpe65(R91W/R91W) mouse, which carries a mutation in the Rpe65 gene leading to progressive photoreceptor degeneration in both patients and mice, we defined stages of retinal degeneration that still allow cone rescue. We evaluated the therapeutic window within which cones can be rescued, using a subretinal injection of a lentiviral vector driving expression of RPE65 in the Rpe65(R91W/R91W) mice. Surprisingly, when applied to adult mice (1 month) this treatment not only stalls or slows cone degeneration but, actually, induces cone-specific protein expression that was previously absent. Before the intervention only part of the cones (40% of the number found in wild-type animals) in the Rpe65(R91W/R91W) mice expressed cone transducin (GNAT2); this fraction increased to 64% after treatment. Correct S-opsin localization is also recovered in the transduced region. In consequence these results represent an extended therapeutic window compared to the Rpe65(-/-) mice, implying that patients suffering from missense mutations might also benefit from a prolonged therapeutic window. Moreover, cones are not only rescued during the course of the degeneration, but can actually recover their initial status, meaning that a proportion of altered cones in chromophore deficiency-related disease can be rehabilitated even though they are severely affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. METHODS AND MATERIALS: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3D statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. RESULTS: Cross-validation revealed a dice similarity of 95% ± 2% for the sclera and cornea and 91% ± 2% for the lens. Overall, mean segmentation error was found to be 0.3 ± 0.1 mm. Average segmentation time was 14 ± 2 s on a standard personal computer. CONCLUSIONS: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its small size and particular isolating barriers, the eye is an ideal target for local therapy. Recombinant protein ocular delivery requires invasive and painful repeated injections. Alternatively, a transfected tissue might be used as a local producer of transgene-encoded therapeutic protein. We have developed a nondamaging electrically mediated plasmid delivery technique (electrotransfer) targeted to the ciliary muscle, which is used as a reservoir tissue for the long-lasting expression and secretion of therapeutic proteins. High and long-lasting reporter gene expression was observed, which was restricted to the ciliary muscle. Chimeric TNF-alpha soluble receptor (hTNFR-Is) electrotransfer led to elevated protein secretion in aqueous humor and to drastic inhibition of clinical and histological inflammation scores in rats with endotoxin-induced uveitis. No hTNFR-Is was detected in the serum, demonstrating the local delivery of proteins using this method. Plasmid electrotransfer to the ciliary muscle, as performed in this study, did not induce any ocular pathology or structural damage. Local and sustained therapeutic protein production through ciliary muscle electrotransfer is a promising alternative to repeated intraocular protein administration for a large number of inflammatory, degenerative, or angiogenic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For radiotherapy treatment planning of retinoblastoma inchildhood, Computed Tomography (CT) represents thestandard method for tumor volume delineation, despitesome inherent limitations. CT scan is very useful inproviding information on physical density for dosecalculation and morphological volumetric information butpresents a low sensitivity in assessing the tumorviability. On the other hand, 3D ultrasound (US) allows ahigh accurate definition of the tumor volume thanks toits high spatial resolution but it is not currentlyintegrated in the treatment planning but used only fordiagnosis and follow-up. Our ultimate goal is anautomatic segmentation of gross tumor volume (GTV) in the3D US, the segmentation of the organs at risk (OAR) inthe CT and the registration of both. In this paper, wepresent some preliminary results in this direction. Wepresent 3D active contour-based segmentation of the eyeball and the lens in CT images; the presented approachincorporates the prior knowledge of the anatomy by usinga 3D geometrical eye model. The automated segmentationresults are validated by comparing with manualsegmentations. Then, for the fusion of 3D CT and USimages, we present two approaches: (i) landmark-basedtransformation, and (ii) object-based transformation thatmakes use of eye ball contour information on CT and USimages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. METHODS AND MATERIALS: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. RESULTS: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. CONCLUSION: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To define the phenotypic manifestation, confirm the genetic basis, and delineate the pathogenic mechanisms underlying an oculoauricular syndrome (OAS). METHODS: Two individuals from a consanguineous family underwent comprehensive clinical phenotyping and electrodiagnostic testing (EDT). Genome-wide microarray analysis and Sanger sequencing of the candidate gene were used to identify the likely causal variant. Protein modelling, Western blotting, and dual luciferase assays were used to assess the pathogenic effect of the variant in vitro. RESULTS: Complex developmental ocular abnormalities of congenital cataract, anterior segment dysgenesis, iris coloboma, early-onset retinal dystrophy, and abnormal external ear cartilage presented in the affected family members. Genetic analyses identified a homozygous c.650A>C; p.(Gln217Pro) missense mutation within the highly conserved homeodomain of the H6 family homeobox 1 (HMX1) gene. Protein modelling predicts that the variant may have a detrimental effect on protein folding and/or stability. In vitro analyses were able to demonstrate that the mutation has no effect on protein expression but adversely alters function. CONCLUSIONS: Oculoauricular syndrome is an autosomal recessive condition that has a profound effect on the development of the external ear, anterior segment, and retina, leading to significant visual loss at an early age. This study has delineated the phenotype and confirmed HMX1 as the gene causative of OAS, enabling the description of only the second family with the condition. HMX1 is a key player in ocular development, possibly in both the pathway responsible for lens and retina development, and via the gene network integral to optic fissure closure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonography of the lens and posterior segment is an indispensable step in the preoperative evaluation of dogs with cataracts, since ophthalmoscopy is not feasible when there is opacification of the lens. This study evaluated the echographic conditions of cataractous lens and fundus of the eye in dogs affected by cataracts. The study was conducted in 30 dogs (56 eyes), 10 males and 20 females, with different types of cataracts at different stages of development. Echography in A and B modes, simultaneously, was carried out for the examination of the lens and posterior segment. The examinations revealed anterior cortical, posterior cortical and nuclear cataract in 12 eyes (21.4%), anterior cortical, posterior cortical, nuclear and posterior capsular in 23 eyes (41%), anterior cortical, posterior cortical and posterior capsular cataract in one eye (1.7%), anterior cortical and nuclear cataract in one eye (1.7%), anterior cortical, nuclear and posterior capsular cataract in five eyes (8.9%), and anterior cortical cataract in seven eyes (12.5%). Abnormal ultrasonographic alterations were observed in the posterior segment in 26 eyes evaluated (46.4%). Vitreal degeneration was detected in 12 eyes (21.4%), images of vitreal exudate or hemorrhage in seven eyes (12.5%), persistence of hyaloid artery in four eyes (7.1%) and lens subluxation in three eyes (5.3%). The results obtained reiterate the importance of ultrasonography in canine patients presented for cataract surgery given that alterations of the posterior segment are difficult to identify in a clinical examination when the lens is opacified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity