652 resultados para Extrusion
Resumo:
This literature search consisting of 240 references to unclassified reports and published literature has been taken from Nuclear Science Abstracts, the official abstract journal of the United States Atomic Energy Commission. The period covered is January 1951 through May 31, 1961. Abstracts for the references can be found by use of the NSA abstract numbers provided.
Resumo:
"Project no. 7351."
Resumo:
"First published 1944."
Resumo:
Flavoring is still a difficult problem in the snack food industry because of the high volatility of flavors and their instability under extrusion condition. Although postextrusion added flavor is commonly used, it suffers from numerous drawbacks. Flavor losses at the exit die because flash distillation is a critical issue and can only be minimized by controlling the pressure difference at the end of the barrel and the exit die, which, however, affects other desirable product characteristics. Residence time distribution (RTD), as an important intermediate process variable that among others controls the extent of reactions, can also be a major determinant on flavor retention during extrusion. Encapsulation of flavors is a promising alternative to enhance the retention of preextrusion added flavor during extrusion. The capsules should withstand high temperature and shear conditions in, the extruder barrel. Various encapsulation techniques and their encapsulated flavor characteristics are illustrated.
Resumo:
Maleic anhydride (MA) and dicumyl peroxide (DCP) were used as crosslinking agent and initiator respectively for blending starch and a biodegradable synthetic aliphatic polyester using reactive extrusion. Blends were characterized using dynamic mechanical and thermal analysis (DMTA). Optical micrographs of the blends revealed that in the optimized blend, starch was evenly dispersed in the polymer matrix. Optimized blends exhibited better tensile properties than the uncompatibilized blends. Xray photoelectron spectroscopy supported the proposed structure for the starch-polyester complex. Variation in the compositions of crosslinking agent and initiator had an impact on the properties and color of the blends.
Resumo:
d-Limonene was encapsulated with beta-cyclodextrin to improve its retention during pre-added flavour starch extrusion. The objective of this work was to determine the effect of processing condition on the flavour retention and extrudate properties. Corn starch containing five levels of beta-cyclodextrin-d-limonene capsules (0-5%) were extruded at five different maximum barrel temperatures (133-167 degrees C) and screw speeds (158-242 rpm) using a twin screw extruder. The effect of these parameters on the flavour retention, expansion, texture, colour difference (Delta E), Water Absorption Index, Water Solubility Index, and residence time distribution (RTD) were investigated. Barrel temperature and capsule level predominantly influenced flavour retention and extrudate properties, while screw speed primarily affected extruder performances such as torque, die pressure, specific mechanical energy and RTD. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the chromosome ploidy level of Marsupenaeus (Penaeus) japonicus (Bate) non-viable (unhatched) embryos and nauplii after exposure to 6-dimethylaminopurine (6-DMAP), timed to stop either polar body (PB) I, or PBI and II extrusion. Embryos from eight separate families or spawnings were exposed to 150 or 200 mu M 6-DMAP from 1- to 3-min post-spawning detection (psd) for a 4- to 5-min duration (timed to stop PBI extrusion). Separate aliquots of embryos from five of the same spawnings were also exposed to 200 mu M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). For one spawning, a third aliquot of embryos was exposed to 400 p M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). At 18-h psd, non-viable embryo and nauplii samples were taken separately for fluorescent activated cell sorting (FACS). FACS revealed that there were diploids and triploids among all treated non-viable embryos and nauplii. All control non-viable embryos and nauplii were diploid. Percentages of triploid induction for the 4- to 5-min and 16-min durations were not significantly different (P > 0.05). Additionally, no difference was found in the triploidy level of nonviable embryos compared to nauplii in these treatments. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 4- to 5-min duration ranged from 29.57% to 99.23% (average 55.28 +/- 5.45%) and from 5.60% to 98.85% (average 46.70 +/- 7.20%), respectively. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 16-min duration ranged from 11.71% to 98.96% (average 52.49 +/- 11.00%) and from 47.5% to 99.24% (average 79.38 +/- 5.24%), respectively. To our knowledge, this is the first documentation of successful PBI or PBI and II inhibition in shrimp. This study conclusively shows that treatment of M. japonicus embryos with 6-DMAP at 1- to 3-min pscl for either a 4- to 5-min duration (timed to stop PBl extrusion) or 16-min duration (timed to stop both PBI and II extrusion) results in viable triploid nauplii. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this research was to investigate the retention of flavour volatiles encapsulated in water-insoluble systems during high temperature–short time extrusion process. A protein precipitation method was used to produce water-insoluble capsules encapsulating limonene, and the capsules were added to the extruder feed material (cornstarch). A twin-screw extruder was used to evaluate the effect of capsule level of addition (0–5%), barrel temperature (125–145 °C) and screw speed (145–175 r.p.m.) on extruder parameters (torque, die pressure, specific mechanical energy, residence time distribution) and extrudate properties [flavour retention, texture, colour, density, expansion, water absorption index, water solubility index (WSI)]. Capsule level had a significant effect on extrusion conditions, flavour retention and extrudate physical properties. Flavour retention increased with the increase in capsule level from 0% to 2.5%, reached a maximum value at capsule level of 2.5% and decreased when the capsule level increased from 2.5% to 5%. The die pressure, torque, expansion ratio, hardness and WSI exhibited the opposite effect with the presence of capsules.
Resumo:
The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.