953 resultados para Extrathoracic Airway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further elucidate the role of proteases capable of cleaving N-terminal proopiomelanocortin (N-POMC)-derived peptides, we have cloned two cDNAs encoding isoforms of the airway trypsin-like protease (AT) from mouse (MAT) and rat ( RAT), respectively. The open reading frames comprise 417 amino acids (aa) and 279 aa. The mouse AT gene was located at chromosome 5E1 and contains 10 exons. The longer isoform, which we designated MAT1 and RAT1, has a simple type II transmembrane protein structure, consisting of a short cytoplasmic domain, a transmembrane domain, a SEA (63-kDa sea urchin sperm protein, enteropeptidase, agrin) module, and a serine protease domain. The human homolog of MAT1 and RAT1 is the human AT ( HAT). The shorter isoform, designated MAT2 and RAT2, which contains an alternative N terminus, was formerly described in the rat as adrenal secretory serine protease (AsP) and has been shown to be involved in the processing of N-POMC-derived peptides. In contrast to the long isoform, neither MAT2 and RAT2 ( AsP) contain a transmembrane domain nor a SEA domain but an N-terminal signal peptide to direct the enzyme to the secretory pathway. The C terminus, covering the catalytic triad, is identical in both isoforms. Immunohistochemically, MAT/RAT was predominantly expressed in tissues of the upper gastrointestinal and the respiratory tract - but also in the adrenal gland. Moreover, isoform-specific RT-PCR and quantitative PCR analysis revealed a complex expression pattern of the two isoforms with differences between mice and rats. These findings indicate a multifunctional role of these proteases beyond adrenal proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport and deposition of charged inhaled aerosols in double planar bifurcation representing generation three to five of human respiratory system has been studied under a light activity breathing condition. Both steady and oscillatory laminar inhalation airflow is considered. Particle trajectories are calculated using a Lagrangian reference frame, which is dominated by the fluid force driven by airflow, gravity force and electrostatic forces (both of space and image charge forces). The particle-mesh method is selected to calculate the space charge force. This numerical study investigates the deposition efficiency in the three-dimensional model under various particle sizes, charge values, and inlet particle distribution. Numerical results indicate that particles carrying an adequate level of charge can improve deposition efficiency in the airway model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that PAS-1, a 200 kDa protein from Ascaris suum, has a potent immunomodulatory effect on humoral and cell-mediated responses induced by APAS-3 (an allergenic protein from A. suum) or unrelated antigens. In this study, we investigated the mechanisms by which PAS-1 is able to induce this effect on an allergic airway inflammation induced by OVA in mice. C57BL/6 mice were adoptively transferred on day 0 with seven different PAS-1-primed cell populations: PAS-1-primed CD19(+) or B220(+) or CD3(+) or CD4(+) or CD8(+) or CD4(+) CD25) or CD4(+) CD25(+) lymphocytes. These mice were immunized twice with OVA and alum by intraperitoneal route (days 0 and 7) and challenged twice by intranasal route (days 14 and 21). Two days after the last challenge, the airway inflammation was evaluated by antibody levels, cellular migration, eosinophil peroxidase levels, cytokine and eotaxin production, and pulmonary mechanical parameters. Among the adoptively transferred primed lymphocytes, only CD4(+) CD25(+), CD8(+) or the combination of both T cells impaired the production of total IgE and OVA-specific IgE and IgG1 antibodies, eosinophilic airway inflammation, Th2-type cytokines (IL-4, IL-5 and IL-13), eotaxin release and airway hyperreactivity. Moreover, airway recruited cells from CD4(+) CD25(+) and CD8(+) T-cell recipient secreted more IL-10/TGF-beta and IFN-gamma, respectively. Moreover, we found that PAS-1 expands significantly the number of CD4(+) CD25(+) FoxP3(+) and CD8(+) gamma delta TCR(+) cells. In conclusion, these findings demonstrate that the immunomodulatory effect of PAS-1 is mediated by these T-cell subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Epidemiological and experimental data suggest that bacteria] lipopolysaccharides (LPS) can either protect from or exacerbate allergic asthma. Lipopolysaccharides trigger immune responses through toll-like receptor 4 (TLR4) that in turn activates two major signalling pathways via either MyD88 or TRIF adaptor proteins. The LPS is a pro-Type 1 T helper cells (Th 1) adjuvant while aluminium hydroxide (alum) is a strong Type 2 T helper cells (Th2) adjuvant, but the effect of the mixing of both adjuvants on the development of lung allergy has not been investigated. Objective We determined whether natural (LPS) or synthetic (ER-803022) TLR4 agonists adsorbed onto alum adjuvant affect allergen sensitization and development of airway allergic disease. To dissect LPS-induced molecular pathways, we used TLR4-, MyD88-, TRIF-, or IL-12/IFN-gamma-deficient mice. Methods Mice were sensitized with subcutaneous injections of ovalbumin (OVA) with or without TLR4 agonists co-adsorbed onto alum and challenged with intranasally with OVA. The development of allergic lung disease was evaluated 24 h after last OVA challenge. Results Sensitization with OVA plus LPS co-adsorbed onto alum impaired in dose-dependent manner OVA-induced Th2-mediated allergic responses such as airway eosinophilia, type-2 cytokines secretion, airway hyper-reactivity, mucus hyper production and serum levels of IgE or IgG1 anaphylactic antibodies. Although the levels of IgG2a, Th1 -affiliated isotype increased, investigation into the lung-specific effects revealed that LPS did not induce a Th1 pattern of inflammation. Lipopolysaccharides impaired the development of Th2 immunity, signaling via TLR4 and MyD88 molecules and via the IL-12/IFN-gamma axis, but not through TRIF pathway. Moreover, the synthetic TLR4 agonists that proved to have a less systemic inflammatory response than LPS also protected against allergic asthma development. Conclusion Toll-like receptor 4 agonists co-adsorbed with allergen onto alum down-modulate allergic lung disease and prevent the development of polarized T cell-mediated airway inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelin peptides have been shown to increase cholinergic neurotransmission in the airway. Genetic differences in airway responsiveness to methacholine where reported in mice. The present study compared the airway reactivity to methacholine in C57Bl/6 and BALB/c mice, the involvement of endothelin on this reactivity and endothelin levels in lung homogenates. Whole airway reactivity was analyzed by means of an isolated lung preparation where lungs were perfused through the trachea with warm gassed Krebs solution at 5 ml/min, and changes in perfusion pressure triggered by methacholine at increasing bolus doses (0.1-100 mu g) were recorded. We found that the maximal airway response to methacholine was much greater in C57Bl/6 than in BALB/c (Emax 34 +/- 2 vs 12 +/- 1 cmH(2)O, respectively). Bosentan (mixed endothelin A/B receptor antagonist; 10 mg/kg, i.p., 30 min before sacrifice) reduced lung responsiveness to methacholine in C57Bl/6 (58% at EC50 level) but had no effect in BALB/c mouse strain. This effect seems to be mediated by the endothelin ETA receptor since it was significantly reduced by the selective endothelin ETA receptor antagonist, BQ 123. Immunoreactive endothelin levels were higher in C57Bl/6 than in BALB/c lungs (43 5 vs 19 +/- 5 pg/g of tissue). In conclusion, airway reactivity to methacholine and lung endothelins content varies markedly between C57Bl/6 and BALB/c strains. Endothelins upregulate lung responsiveness to methacholine only in C57Bl/6, an effect achieved through the endothelin ETA receptor. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Periodontal disease (PD) and airway allergic inflammation (AL) present opposing inflammatory immunological features and clinically present an inverse correlation. However, the putative mechanisms underlying such opposite association are unknown. Material and Methods Balb/C mice were submitted to the co-induction of experimental PD (induced by Actinobacillus actinomycetemcomitans oral inoculation) and AL [induced by sensitization with ovalbumin (OVA) and the subsequent OVA challenges], and evaluated regarding PD and AL severity, immune response [cytokine production at periodontal tissues, and T-helper transcription factors in submandibular lymph nodes (LNs)] and infection parameters. Results PD/AL co-induction decreased PD alveolar bone loss and periodontal inflammation while experimental AL parameters were unaltered. An active functional interference was verified, because independent OVA sensitization and challenge not modulate PD outcome. PD+AL group presented decreased tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta, -gamma, IL-17A, receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand and matrix metalloproteinase (MMP)-13 levels in periodontal tissues, while IL-4 and IL-10 levels were unaltered by AL co-induction. AL co-induction also resulted in upregulated T-bet and related orphan receptor gamma and downregulated GATA3 levels expression in submandibular LNs when compared with PD group. Conclusion Our results demonstrate that the interaction between experimental periodontitis and allergy involves functional immunological interferences, which restrains experimental periodontitis development by means of a skewed immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective. Low level laser therapy (LLLT) is a known anti-inflammatory therapy. Herein we studied the effect of LLLT on lung permeability and the IL-1 beta level in LPS-induced pulmonary inflammation. Study Design/Methodology. Rats were divided into 12 groups (n = 7 for each group). Lung permeability was measured by quantifying extravasated albumin concentration in lung homogenate, inflammatory cells influx was determined by myeloperoxidase activity, IL-1P in BAL was determined by ELISA and IL-1P mRNA expression in trachea was evaluated by RT-PCR. The rats were irradiated on the skin over the upper bronchus at the site of tracheotomy after LPS. Results. LLLT attenuated lung permeability. In addition, there was reduced neutrophil influx, myeloperoxidase activity and both IL-1 beta in BAL and IL-1 beta mRNA expression in trachea obtained from animals subjected to LPS-induced inflammation. Conclusion. LLLT reduced the lung permeability by a mechanism in which the IL-1 beta seems to have an important role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.