999 resultados para Extraction automatique de connaissances


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that lithium can be oxidatively extracted from Li2MoO3 at room temperature using Br2 in CHCl3. The delithiated oxides, Li2â��xMoO3 (0 < x â�¤ 1.5) retain the parent ordered rocksalt structure. Complete removal of lithium from Li2MoO3 using Br2 in CH3CN results in a poorly crystalline MoO3 that transforms to the stable structure at 280�°C. Li2MoO3 undergoes topotactic ion-exchange in aqueous H2SO4 to yield a new protonated oxide, H2MoO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity, sodicity, acidity, and phytotoxic levels of chloride (Cl) in subsoils are major constraints to crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to extract water and nutrients from the soil. The complex interactions and correlations among soil properties result in multi-colinearity between soil properties and crop yield that makes it difficult to determine which constraint is the major limitation. We used ridge-regression analysis to overcome colinearity to evaluate the contribution of soil factors and water supply to the variation in the yields of 5 winter crops on soils with various levels and combinations of subsoil constraints in the region. Subsoil constraints measured were soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). The ridge regression procedure selected several of the variables used in a descriptive model, which included in-crop rainfall, plant-available soil water at sowing in the 0.90-1.10 m soil layer, and soil Cl in the 0.90-1.10 m soil layer, and accounted for 77-85% of the variation in the grain yields of the 5 winter crops. Inclusion of ESP of the top soil (0.0-0.10 m soil layer) marginally increased the descriptive capability of the models for bread wheat, barley and durum wheat. Subsoil Cl concentration was found to be an effective substitute for subsoil water extraction. The estimates of the critical levels of subsoil Cl for a 10% reduction in the grain yield were 492 mg cl/kg for chickpea, 662 mg Cl/kg for durum wheat, 854 mg Cl/kg for bread wheat, 980 mg Cl/kg for canola, and 1012 mg Cl/kg for barley, thus suggesting that chickpea and durum wheat were more sensitive to subsoil Cl than bread wheat, barley, and canola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To maximize the information commonly collected from otoliths, the effect of DNA extraction on the estimation of age with otoliths was evaluated by comparing sagittal otolith samples from common coral trout (Plectropomus leopardus) for clarity and ageing discrepancies in DNA-extracted and untreated control otoliths. The DNA extraction process had no significant effect, indicating that archived otoliths can be used as a source of DNA while retaining their utility for age estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of iron(II1) extraction by bis(Zethylhexy1) phosphate (HDEHP, HA) in kerosene from sulfuric acid solutions has been studied in a liquid-liquid laminar jet reactor. The contact time of the interface in this reacting device is of the same order of magnitude as the surface renewal time in dispersion mixing and much less than that obtained in the relatively quiescent condition of the Lewis cell. Yet the analysis of the data in this study suggested a rate-controlling step involving surface saturation quite in conformity with that obtained in the Lewis cell and not with that in dispersion mixing as reported in the literature. Further, the mechanism suggested a weaker dependence of the rate on hydrogen ion concentration which was reported by other workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of activated carbon particles (Darco-G, average size 4.3,μm) is shown to enhance the initial rate of extraction of copper in a Lewis cell by a mixture of α- and β-hydroxyoximes, when the rate of extraction is controlled by resistances in the organic phase. It is likely that the copper complex is adsorbed by carbon near the interace and partially released in the bulk. The enhancing effect of carbon vanishes when toluene is used as a diluent instead of heptane, presumably because toluene preferentially adsorbs on its surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantification and characterisation of soil phosphorus (P) is of agricultural and environmental importance and different extraction methods are widely used to asses the bioavailability of P and to characterize soil P reserves. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is crucial to know the scientific relevance of the methods used for various purposes. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. The aim of this thesis was to study the effects of sample preparation procedures on soil P and to determine the dependence of the recovered P pool on the chemical nature of extractants. Sampling is a critical step in soil testing and sampling strategy is dependent on the land-use history and the purpose of sampling. This study revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. However, freezing induced only insignificant changes and thus, freezing can be taken to be a suitable method for storing soils from the boreal zone that naturally undergo periodic freezing. The results demonstrated that chemical nature of the extractant affects its sensitivity to detect changes in soil P solubility. Buffered extractants obscured the alterations in P solubility induced by pH changes; however, water extraction, though sensitive to physicochemical changes, can be used to reveal short term changes in soil P solubility. As for the organic P, the analysis was found to be sensitive to the sample preparation procedures: filtering may leave a large proportion of extractable organic P undetected, whereas the outcome of centrifugation was found to be affected by the ionic strength of the extractant. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. However, interpretation of the results from extraction experiments requires better understanding of the biogeochemical function of the recovered P fraction in the P cycle in differently managed soils under dissimilar climatic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of maize simulation models to determine the optimum plant population for rainfed environments allows the evaluation of plant populations over multiple years and locations at a lower cost than traditional field experimentation. However the APSIM maize model that has been used to conduct some of these 'virtual' experiments assumes that the maximum rate of soil water extraction by the crop root system is constant across plant populations. This untested assumption may cause grain yield to be overestimated in lower plant populations. A field experiment was conducted to determine whether maximum rates of water extraction vary with plant population, and the maximum rate of soil water extraction was estimated for three plant populations (2.4, 3.5 and 5.5 plants m(-2)) under water limited conditions. Maximum soil water extraction rates in the field experiment decreased linearly with plant population, and no difference was detected between plant populations for the crop lower limit of soil water extraction. Re-analysis of previous maize simulation experiments demonstrated that the use of inappropriately high extraction-rate parameters at low plant populations inflated predictions of grain yield, and could cause erroneous recommendations to be made for plant population. The results demonstrate the importance of validating crop simulation models across the range of intended treatments. (C) 2013 Elsevier E.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinifex grasses are the dominant vegetative component in Australian grassland habitats, covering approximately 26% of the Australian landmass. Our ongoing work explores the utility of both the cellulosic and resinous components of this abundant biomass for modern applications and a potential economy for our Aboriginal collaborators. This study is focused on the optimisation of a resin extraction process using solvent, and the subsequent evaluation, via a field trial, of the potential use and efficacy of the resin as an anti-termite coating material. Termiticidal performance was evaluated by re-dissolving the extracted resin in acetone and coating on pine timber blocks. The resin-coated and control blocks were then exposed to a colony of Mastotermes darwiniensis’ (Froggatt) termites, which are the most primitive alive and destructive species in subterranean area, at a trial site in northeast Australia, for six months. The results clearly showed that spinifex resin effectively protected the timber from termite attack, while the uncoated control samples were extensively damaged. By demonstrating an enhanced termite resistance, we here report that plant resins that are produced by arid/semi-arid grasses could be potentially used as treatments to prevent termite attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressurised hot water extraction (PHWE) exploits the unique temperature-dependent solvent properties of water minimising the use of harmful organic solvents. Water is environmentally friendly, cheap and easily available extraction medium. The effects of temperature, pressure and extraction time in PHWE have often been studied, but here the emphasis was on other parameters important for the extraction, most notably the dimensions of the extraction vessel and the stability and solubility of the analytes to be extracted. Non-linear data analysis and self-organising maps were employed in the data analysis to obtain correlations between the parameters studied, recoveries and relative errors. First, pressurised hot water extraction (PHWE) was combined on-line with liquid chromatography-gas chromatography (LC-GC), and the system was applied to the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) in sediment. The method is of superior sensitivity compared with the traditional methods, and only a small 10 mg sample was required for analysis. The commercial extraction vessels were replaced by laboratory-made stainless steel vessels because of some problems that arose. The performance of the laboratory-made vessels was comparable to that of the commercial ones. In an investigation of the effect of thermal desorption in PHWE, it was found that at lower temperatures (200ºC and 250ºC) the effect of thermal desorption is smaller than the effect of the solvating property of hot water. At 300ºC, however, thermal desorption is the main mechanism. The effect of the geometry of the extraction vessel on recoveries was studied with five specially constructed extraction vessels. In addition to the extraction vessel geometry, the sediment packing style and the direction of water flow through the vessel were investigated. The geometry of the vessel was found to have only minor effect on the recoveries, and the same was true of the sediment packing style and the direction of water flow through the vessel. These are good results because these parameters do not have to be carefully optimised before the start of extractions. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) were compared as trapping techniques for PHWE. LLE was more robust than SPE and it provided better recoveries and repeatabilities than did SPE. Problems related to blocking of the Tenax trap and unrepeatable trapping of the analytes were encountered in SPE. Thus, although LLE is more labour intensive, it can be recommended over SPE. The stabilities of the PAHs in aqueous solutions were measured using a batch-type reaction vessel. Degradation was observed at 300ºC even with the shortest heating time. Ketones and quinones and other oxidation products were observed. Although the conditions of the stability studies differed considerably from the extraction conditions in PHWE, the results indicate that the risk of analyte degradation must be taken into account in PHWE. The aqueous solubilities of acenaphthene, anthracene and pyrene were measured, first below and then above the melting point of the analytes. Measurements below the melting point were made to check that the equipment was working, and the results were compared with those obtained earlier. Good agreement was found between the measured and literature values. A new saturation cell was constructed for the solubility measurements above the melting point of the analytes because the flow-through saturation cell could not be used above the melting point. An exponential relationship was found between the solubilities measured for pyrene and anthracene and temperature.