912 resultados para Extinction (Biology)
Resumo:
The link between body size and risk of extinction has been the focus of much recent attention. For Australian terrestrial mammals this link is of particular interest because it is widely believed that species in the intermediate size range of 35-5500 g (the critical weight range) have been the most prone to recent extinction. But the relationship between body size and extinction risk in Australian mammals has never been subject to a robust statistical analysis. Using a combination of randomization tests and phylogenetic comparative analyses, we found that Australian mammal extinctions and declines have been nonrandom with respect to body size, but we reject the hypothesis of a critical weight range at intermediate sizes. Small species appear to be the least prone to extinction, but extinctions have not been significantly clustered around intermediate sizes. Our results suggest that hypotheses linking intermediate body size with high risk of extinction in Australian mammals are misguided and that the focus of future research should shift to explaining why the smallest species are the most resistant to extinction.
Resumo:
We investigated the effects of conditional stimulus fear-relevance and of instructed extinction on human Pavlovian conditioning as indexed by electrodermal responses and verbal ratings of conditional stimulus unpleasantness. Half of the participants (n = 64) were trained with pictures of snakes and spiders (fear-relevant) as conditional stimuli, whereas the others were trained with pictures of flowers and mushrooms (fear-irrelevant) in a differential aversive Pavlovian conditioning procedure. Half of the participants in each group were instructed after the completion of acquisition that no more unconditional stimuli were to be presented. Extinction of differential electrodermal responses required more trials after training with fear-relevant pictures. Moreover, there was some evidence that verbal instructions did not affect extinction of second interval electrodermal responses to fear-relevant pictures. However, neither fear-relevance nor instructions affected the changes in rated conditional stimulus pleasantness. This dissociation across measures is interpreted as reflecting renewal of Pavlovian learning.
Resumo:
The eastern shovelnose ray, Aptychotrema rostrata (Rhinobatidae), is an endemic batoid common to the east coast of Australia. The reproductive cycle was studied in Moreton Bay, south-eastern Queensland, over a 14-month period. Aptychotrema rostrata is an aplacental yolksac viviparous species with an annual, seasonal reproductive cycle in Moreton Bay. Females mature at 54-66 cm total length, and males at 60-68 cm total length. Gravid females were observed during September-November and parturition occurred in November-December. Vitellogenesis does not proceed in parallel with gestation. Ovulation and copulation probably occur during July-September, resulting in a gestational period of 3-5 months. Uterine fecundity ranges from 4 to 18, with a significant positive relationship between uterine fecundity and maternal body length. In mature males, a peak in the proportion of mature spermatocysts in the testes was observed in July, whereas gonadosomatic index peaked in April.
Resumo:
We collected data on plasma levels of testosterone+5a-dihydrotestosterone (T+DHT) and corticosterone (CORT) from adult female green sea turtles (Chelonia mydas) from southern Queensland during distinct stages of their reproductive cycle. Those females capable of breeding in a given year had elevated plasma steroid levels (T+DHT 0.91 +/- 0.08; CORT 1.05 +/- 0.29 ng/ml), associated with follicular development, until courtship began in October. At the beginning of the nesting season in November plasma levels of 2 CORT were related to when the female first nested (r(2) = 0.06; F = 10.45; P = 0.01). However, they were not correlated with the number of clutches a female laid in that season (F = 3.65; P = 0.08). We repeatedly sampled 23 turtles over the nesting season and profiled changes in steroids immediately following oviposition of each clutch. Levels of T+DHT (range 0.41-0.58 ng/ml) and CORT (range 2.13-2.81 ng/ml) were similar through the early stages of the nesting season and inter-nesting period, and declined to near basal levels (T+DHT 0.37 +/- 0.03 and CORT 1.85 +/- ng/ml) following the last clutch for the season. Steroid hormone levels were also low (T+DHT 0.38 +/- 0.16; CORT 0.46 +/- 0.21 ng/ml) in four independent post-breeding (atretic) females; samples for these females were taken at a time when body condition was presumably at the lowest for the season. Subtle changes in the nesting environment, such as variation in nesting habitat or the time of night that nesting occurred, were associated with a small and slow CORT increase. We suggest CORT is increased in nesting females to assist in lipid transfer to prepare the ovarian follicles and/or the reproductive organs for ovulation.
Resumo:
In the reproductive biology of organisms, a continuum exists from "highly reproductive species" at one end to "survivor species" at the other end. Among other factors, the position of a species along this continuum affects its sensitivity to human exploitation and its vulnerability to extinction. Flying foxes are long-lived, seasonal breeders, with a rigid, well-defined breeding season that is largely or wholly genetically determined. Unlike opportunistic, highly reproductive species, such as rabbits or mice, female flying foxes are unable to produce viable young before their second or third year of life, and are then capable of producing just one young per year. Such a breeding strategy will be successful only if flying-foxes are long-lived and suffer naturally low mortality rates. In this paper, we assess the vulnerability of flying foxes to extinction, using basic parameters of reproduction observed in the wild, and in captive breeding colonies of P. poliocephalus, P. alecto and P. scapulatus, and survival rates that are likely to apply to Australian conditions. Our models show explicitly that flying-fox populations have a very low capacity for increase, even under the most ideal conditions. The implications of our models are discussed in reference to the long-term management and conservation needs of Australian flying foxes. We conclude that current death-rates of flying-foxes in NSW and Queensland fruit orchards are putting state populations at serious risk.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Some long-forgotten fossil evidence reveals that a dicynodont (mammal-like reptile of the infraorder Dicynodontia) inhabited Australia as recently as the Early Cretaceous, ca. 110 Myr after the supposed extinction of dicynodonts in the Late Triassic. This remarkably late occurrence more than doubles the known duration of dicynodont history (from ca. 63 Myr to ca. 170 Myr) and betrays the profound impact of geographical isolation on Australian terrestrial faunas through the Mesozoic. Australia's late-surviving dicynodont may be envisaged as a counterpart of the ceratopians (homed dinosaurs) in Cretaceous tetrapod faunas of Asia and North America.