959 resultados para Expenditure-based segmentation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel background modeling system that uses a spatial grid of Support Vector Machines classifiers for segmenting moving objects, which is a key step in many video-based consumer applications. The system is able to adapt to a large range of dynamic background situations since no parametric model or statistical distribution are assumed. This is achieved by using a different classifier per image region that learns the specific appearance of that scene region and its variations (illumination changes, dynamic backgrounds, etc.). The proposed system has been tested with a recent public database, outperforming other state-of-the-art algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the advent of Customer Relationship Management, a more accurate profile of the consumer is needed. The objective of this paper is to show the usefulness of knowing consumer’s complete utility function through his/her marginal utilities. This approach allows one to form groups of individuals with similar preferences (as traditional segmentation methods do) and to treat them individually (which represents an advance). The empirical application is carried out, on a sample of 2,127 individuals, in the context of tourism, where the customer relationship management philosophy is gaining more and more relevance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Texture-segmentation is the crucial initial step for texture-based image retrieval. Texture is the main difficulty faced to a segmentation method. Many image segmentation algorithms either can’t handle texture properly or can’t obtain texture features directly during segmentation which can be used for retrieval purpose. This paper describes an automatic texture segmentation algorithm based on a set of features derived from wavelet domain, which are effective in texture description for retrieval purpose. Simulation results show that the proposed algorithm can efficiently capture the textured regions in arbitrary images, with the features of each region extracted as well. The features of each textured region can be directly used to index image database with applications as texture-based image retrieval.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work introduces a tessellation-based model for the declivity analysis of geographic regions. The analysis of the relief declivity, which is embedded in the rules of the model, categorizes each tessellation cell, with respect to the whole considered region, according to the (positive, negative, null) sign of the declivity of the cell. Such information is represented in the states assumed by the cells of the model. The overall configuration of such cells allows the division of the region into subregions of cells belonging to a same category, that is, presenting the same declivity sign. In order to control the errors coming from the discretization of the region into tessellation cells, or resulting from numerical computations, interval techniques are used. The implementation of the model is naturally parallel since the analysis is performed on the basis of local rules. An immediate application is in geophysics, where an adequate subdivision of geographic areas into segments presenting similar topographic characteristics is often convenient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of digital image processing techniques is prominent in medical settings for the automatic diagnosis of diseases. Glaucoma is the second leading cause of blindness in the world and it has no cure. Currently, there are treatments to prevent vision loss, but the disease must be detected in the early stages. Thus, the objective of this work is to develop an automatic detection method of Glaucoma in retinal images. The methodology used in the study were: acquisition of image database, Optic Disc segmentation, texture feature extraction in different color models and classification of images in glaucomatous or not. We obtained results of 93% accuracy

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In design and manufacturing, mesh segmentation is required for FACE construction in boundary representation (BRep), which in turn is central for featurebased design, machining, parametric CAD and reverse engineering, among others -- Although mesh segmentation is dictated by geometry and topology, this article focuses on the topological aspect (graph spectrum), as we consider that this tool has not been fully exploited -- We preprocess the mesh to obtain a edgelength homogeneous triangle set and its Graph Laplacian is calculated -- We then produce a monotonically increasing permutation of the Fiedler vector (2nd eigenvector of Graph Laplacian) for encoding the connectivity among part feature submeshes -- Within the mutated vector, discontinuities larger than a threshold (interactively set by a human) determine the partition of the original mesh -- We present tests of our method on large complex meshes, which show results which mostly adjust to BRep FACE partition -- The achieved segmentations properly locate most manufacturing features, although it requires human interaction to avoid over segmentation -- Future work includes an iterative application of this algorithm to progressively sever features of the mesh left from previous submesh removals

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The new generation of artificial satellites is providing a huge amount of Earth observation images whose exploitation can report invaluable benefits, both economical and environmental. However, only a small fraction of this data volume has been analyzed, mainly due to the large human resources needed for that task. In this sense, the development of unsupervised methodologies for the analysis of these images is a priority. In this work, a new unsupervised segmentation algorithm for satellite images is proposed. This algorithm is based on the rough-set theory, and it is inspired by a previous segmentation algorithm defined in the RGB color domain. The main contributions of the new algorithm are: (i) extending the original algorithm to four spectral bands; (ii) the concept of the superpixel is used in order to define the neighborhood similarity of a pixel adapted to the local characteristics of each image; (iii) and two new region merged strategies are proposed and evaluated in order to establish the final number of regions in the segmented image. The experimental results show that the proposed approach improves the results provided by the original method when both are applied to satellite images with different spectral and spatial resolutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, World Heritage Sites (WHS) have been facing new challenges, partially due to a different tourism consumption patterns. As it is highlighted in a considerable amount of studies, visits to these sites are almost justified by this prestigious classification and motivations are closely associated with their cultural aspects and quality of the overall environment (among others, Marujo et al, 2012). However, a diversity of tourists’ profiles have been underlined in the literature. Starting from the results obtained in a previous study about cultural tourists’ profile, conducted during the year 2009 in the city of Évora, Portugal, it is our intend to compare the results with a recent survey applied to the visitors of the same city. Recognition of Évora by UNESCO in 1986 as “World Heritage” has fostered not only the preservation of heritage but also the tourist promotion of the town. This study compares and examined tourists’ profile, regarding from the tourists’ expenditure patterns in Évora. A total of 450 surveys were distributed in 2009, and recently, in 2015, the same numbers of surveys were collected. Chi-squared Automatic Interaction Detection (CHAID) was applied to model consumer patterns of domestic and international visitors, based on socio demographic, trip characteristics, length of stay and the degree of satisfaction of pull factors. CHAID allowed find a population classification in groups that able to describe the dependent variable, average daily tourist expenditure. Results revealed different patterns of daily average expenditure amongst the years, 2009 and 2015, even if primarily results not revealed significant variations in socio-demographic and trip characteristics among the visitors’ core profile. Local authorities should be aware of this changing expensive behavior of cultural visitors and should formulate strategies accordingly. Policy and managerial recommendations are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigates tourists’ expenditure patterns in the city of Évora, a world heritage site (WHS) classified by UNESCO. The use of chi-squared automatic interaction detection (CHAID) was chosen, allowing the identification of distinct segments based on expenditure patterns. Visitors’ expenditure patterns have proven to be a pertinent element for a broader understanding of visitors’ behaviour at cultural destinations. Visitors’ expenditure patterns were revealed to be increasing within years studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reduction in LDL cholesterol and an increase in HDL cholesterol levels are clinically relevant parameters for the treatment of dyslipidaemia, and exercise is often recommended as an intervention. This study aimed to examine the effects of acute, high-intensity exercise (similar to 90% VO(2max)) and varying carbohydrate levels (control, low and high) on the blood lipid profile. Six male subjects were distributed randomly into exercise groups, based on the carbohydrate diets (control, low and high) to which the subjects were restricted before each exercise session. The lipid profile (triglycerides, VLDL, HDL cholesterol, LDL cholesterol and total cholesterol) was determined at rest, and immediately and 1 h after exercise bouts. There were no changes in the time exhaustion (8.00 +/- A 1.83; 7.82 +/- A 2.66; and 9.09 +/- A 3.51 min) and energy expenditure (496.0 +/- A 224.8; 411.5 +/- A 223.1; and 592.1 +/- A 369.9 kJ) parameters with the three varying carbohydrate intake (control, low and high). Glucose and insulin levels did not show time-dependent changes under the different conditions (P > 0.05). Total cholesterol and LDL cholesterol were reduced after the exhaustion and 1 h recovery periods when compared with rest periods only in the control carbohydrate intake group (P < 0.05), although this relation failed when the diet was manipulated. These results indicate that acute, high-intensity exercise with low energy expenditure induces changes in the cholesterol profile, and that influences of carbohydrate level corresponding to these modifications fail when carbohydrate (low and high) intake is manipulated.