855 resultados para Evolutionary optimization methods
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.
Resumo:
Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.
Resumo:
The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
Consider N points in R-d and M local coordinate systems that are related through unknown rigid transforms. For each point, we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The least-squares formulation of this problem, although nonconvex, has a well-known closed-form solution when M = 2 (based on the singular value decomposition (SVD)). However, no closed-form solution is known for M >= 3. In this paper, we demonstrate how the least-squares formulation can be relaxed into a convex program, namely, a semidefinite program (SDP). By setting up connections between the uniqueness of this SDP and results from rigidity theory, we prove conditions for exact and stable recovery for the SDP relaxation. In particular, we prove that the SDP relaxation can guarantee recovery under more adversarial conditions compared to earlier proposed spectral relaxations, and we derive error bounds for the registration error incurred by the SDP relaxation. We also present results of numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the SDP (i.e., we are able to solve the original nonconvex least-squares problem) up to a certain noise threshold, and (b) the SDP performs significantly better than spectral and manifold-optimization methods, particularly at large noise levels.
Resumo:
This report presents the results from a survey of current practice in the use of design optimization conducted amongst UK companies. The survey was completed by the Design Optimization Group in the Department of Engineering at Cambridge University. The general aims of this research were to understand the current status of design optimization research and practice and to identify ways in which the use of design optimization methods and tools could be improved.
Resumo:
Nas últimas décadas, teorias têm sido formuladas para interpretar o comportamento de solos não saturados e estas têm se mostrado coerentes com resultados experimentais. Paralelamente, várias técnicas de campo e de laboratório têm sido desenvolvidas. No entanto, a determinação experimental dos parâmetros dos solos não saturados é cara, morosa, exige equipamentos especiais e técnicos experientes. Como resultado, essas teorias têm aplicação limitada a pesquisas acadêmicas e são pouco utilizados na prática da engenharia. Para superar este problema, vários pesquisadores propuseram equações para representar matematicamente o comportamento de solos não saturados. Estas proposições são baseadas em índices físicos, caracterização do solo, em ensaios convencionais ou simplesmente em ajustes de curvas. A relação entre a umidade e a sucção matricial, convencionalmente denominada curva característica de sucção do solo (SWCC) é também uma ferramenta útil na previsão do comportamento de engenharia de solos não saturados. Existem muitas equações para representar matematicamente a SWCC. Algumas são baseadas no pressuposto de que sua forma está diretamente relacionada com a distribuição dos poros e, portanto, com a granulometria. Nestas proposições, os parâmetros são calibrados pelo ajuste da curva de dados experimentais. Outros métodos supõem que a curva pode ser estimada diretamente a partir de propriedades físicas dos solos. Estas propostas são simples e conveniente para a utilização prática, mas são substancialmente incorretas, uma vez que ignoram a influência do teor de umidade, nível de tensões, estrutura do solo e mineralogia. Como resultado, a maioria tem sucesso limitado, dependendo do tipo de solo. Algumas tentativas têm sido feitas para prever a variação da resistência ao cisalhamento com relação a sucção matricial. Estes procedimentos usam, como uma ferramenta, direta ou indiretamente, a SWCC em conjunto com os parâmetros efetivos de resistência c e . Este trabalho discute a aplicabilidade de três equações para previsão da SWCC (Gardner, 1958; van Genuchten, 1980; Fredlund; Xing, 1994) para vinte e quatro amostras de solos residuais brasileiros. A adequação do uso da curva característica normalizada, proposta por Camapum de Carvalho e Leroueil (2004), também foi investigada. Os parâmetros dos modelos foram determinados por ajuste de curva, utilizando técnicas de problema inverso; dois métodos foram usados: algoritmo genético (AG) e Levenberq-Marquardt. Vários parâmetros que influênciam o comportamento da SWCC são discutidos. A relação entre a sucção matricial e resistência ao cisalhamento foi avaliada através de ajuste de curva utilizando as equações propostas por Öberg (1995); Sällfors (1997), Vanapalli et al., (1996), Vilar (2007); Futai (2002); oito resultados experimentais foram analisados. Os vários parâmetros que influênciam a forma da SWCC e a parcela não saturadas da resistência ao cisalhamento são discutidos.
Resumo:
This thesis presents methods for incrementally constructing controllers in the presence of uncertainty and nonlinear dynamics. The basic setting is motion planning subject to temporal logic specifications. Broadly, two categories of problems are treated. The first is reactive formal synthesis when so-called discrete abstractions are available. The fragment of linear-time temporal logic (LTL) known as GR(1) is used to express assumptions about an adversarial environment and requirements of the controller. Two problems of changes to a specification are posed that concern the two major aspects of GR(1): safety and liveness. Algorithms providing incremental updates to strategies are presented as solutions. In support of these, an annotation of strategies is developed that facilitates repeated modifications. A variety of properties are proven about it, including necessity of existence and sufficiency for a strategy to be winning. The second category of problems considered is non-reactive (open-loop) synthesis in the absence of a discrete abstraction. Instead, the presented stochastic optimization methods directly construct a control input sequence that achieves low cost and satisfies a LTL formula. Several relaxations are considered as heuristics to address the rarity of sampling trajectories that satisfy an LTL formula and demonstrated to improve convergence rates for Dubins car and single-integrators subject to a recurrence task.
Resumo:
Esta tese tem por objetivo propor uma estratégia de obtenção automática de parâmetros hidrodinâmicos e de transporte através da solução de problemas inversos. A obtenção dos parâmetros de um modelo físico representa um dos principais problemas em sua calibração, e isso se deve em grande parte à dificuldade na medição em campo desses parâmetros. Em particular na modelagem de rios e estuários, a altura da rugosidade e o coeficiente de difusão turbulenta representam dois dos parâmetros com maior dificuldade de medição. Nesta tese é apresentada uma técnica automatizada de estimação desses parâmetros através deum problema inverso aplicado a um modelo do estuário do rio Macaé, localizado no norte do Rio de Janeiro. Para este estudo foi utilizada a plataforma MOHID, desenvolvida na Universidade Técnica de Lisboa, e que tem tido ampla aplicação na simulação de corpos hídricos. Foi realizada uma análise de sensibilidade das respostas do modelo com relação aos parâmetros de interesse. Verificou-se que a salinidade é uma variável sensível a ambos parâmetros. O problema inverso foi então resolvido utilizando vários métodos de otimização através do acoplamento da plataforma MOHID a códigos de otimização implementados em Fortran. O acoplamento foi realizado de forma a não alterar o código fonte do MOHID, possibilitando a utilização da ferramenta computacional aqui desenvolvida em qualquer versão dessa plataforma, bem como a sua alteração para o uso com outros simuladores. Os testes realizados confirmam a eficiência da técnica e apontam as melhores abordagens para uma rápida e precisa estimação dos parâmetros.
Resumo:
Diversas aplicações industriais relevantes envolvem os processos de adsorção, citando como exemplos a purificação de produtos, separação de substâncias, controle de poluição e umidade entre outros. O interesse crescente pelos processos de purificação de biomoléculas deve-se principalmente ao desenvolvimento da biotecnologia e à demanda das indústrias farmacêutica e química por produtos com alto grau de pureza. O leito móvel simulado (LMS) é um processo cromatográfico contínuo que tem sido aplicado para simular o movimento do leito de adsorvente, de forma contracorrente ao movimento do líquido, através da troca periódica das posições das correntes de entrada e saída, sendo operado de forma contínua, sem prejuízo da pureza das correntes de saída. Esta consiste no extrato, rico no componente mais fortemente adsorvido, e no rafinado, rico no componente mais fracamente adsorvido, sendo o processo particularmente adequado a separações binárias. O objetivo desta tese é estudar e avaliar diferentes abordagens utilizando métodos estocásticos de otimização para o problema inverso dos fenômenos envolvidos no processo de separação em LMS. Foram utilizados modelos discretos com diferentes abordagens de transferência de massa, com a vantagem da utilização de um grande número de pratos teóricos em uma coluna de comprimento moderado, neste processo a separação cresce à medida que os solutos fluem através do leito, isto é, ao maior número de vezes que as moléculas interagem entre a fase móvel e a fase estacionária alcançando assim o equilíbrio. A modelagem e a simulação verificadas nestas abordagens permitiram a avaliação e a identificação das principais características de uma unidade de separação do LMS. A aplicação em estudo refere-se à simulação de processos de separação do Baclofen e da Cetamina. Estes compostos foram escolhidos por estarem bem caracterizados na literatura, estando disponíveis em estudos de cinética e de equilíbrio de adsorção nos resultados experimentais. De posse de resultados experimentais avaliou-se o comportamento do problema direto e inverso de uma unidade de separação LMS visando comparar os resultados obtidos com os experimentais, sempre se baseando em critérios de eficiência de separação entre as fases móvel e estacionária. Os métodos estudados foram o GA (Genetic Algorithm) e o PCA (Particle Collision Algorithm) e também foi feita uma hibridização entre o GA e o PCA. Como resultado desta tese analisouse e comparou-se os métodos de otimização em diferentes aspectos relacionados com o mecanismo cinético de transferência de massa por adsorção e dessorção entre as fases sólidas do adsorvente.
Resumo:
Nesta tese é realizada a modelagem do comportamento hidráulico dos principais rios que compõem a bacia hidrográfica do Rio Bengalas, localizada no município de Nova Friburgo-RJ, a qual abrange a área mais urbanizada da referida cidade. Para a realização das simulações foi utilizado o Sistema de Modelagem de Águas MOHID, ferramenta MOHID Land. Já para a calibração do modelo foram adotados alguns métodos de otimização, mais precisamente, os algoritmos de Luus- Jaakola (LJ) e Colisão de Partículas (PCA), acoplados ao referido sistema, com o intuito de determinar os principais parâmetros necessários à modelagem de corpos hídricos, bem como suas bacias hidrográficas. Foram utilizados dados topográficos do IBGE disponibilizados pela prefeitura após a elaboração do Plano de Águas Pluviais da região de interesse. Com o modelo devidamente calibrado por meio de dados experimentais, foi realizada a validação do mesmo através da simulação de inundações nesta região. Apesar de técnicas de otimização acopladas à plataforma MOHID terem sido utilizadas pela primeira vez em um rio de montanha, os resultados apresentaram-se importantes e qualitativamente satisfatórios do ponto de vista de auxílio à tomada de decisões, tendo como base a prevenção de danos causados pelas elevações da lâmina dágua que ocorrem frequentemente em Nova Friburgo, como por exemplo, a recente tragédia de janeiro de 2011 ocorrida na Região Serrana do Estado do Rio de Janeiro.
Resumo:
Métodos de otimização que utilizam condições de otimalidade de primeira e/ou segunda ordem são conhecidos por serem eficientes. Comumente, esses métodos iterativos são desenvolvidos e analisados à luz da análise matemática do espaço euclidiano n-dimensional, cuja natureza é de caráter local. Consequentemente, esses métodos levam a algoritmos iterativos que executam apenas as buscas locais. Assim, a aplicação de tais algoritmos para o cálculo de minimizadores globais de uma função não linear,especialmente não-convexas e multimodais, depende fortemente da localização dos pontos de partida. O método de Otimização Global Topográfico é um algoritmo de agrupamento, que utiliza uma abordagem baseada em conceitos elementares da teoria dos grafos, a fim de gerar bons pontos de partida para os métodos de busca local, a partir de pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem dois objetivos. O primeiro é realizar uma nova abordagem sobre método de Otimização Global Topográfica, onde, pela primeira vez, seus fundamentos são formalmente descritos e suas propriedades básicas são matematicamente comprovadas. Neste contexto, propõe-se uma fórmula semi-empírica para calcular o parâmetro chave deste algoritmo de agrupamento, e, usando um método robusto e eficiente de direções viáveis por pontos-interiores, estendemos o uso do método de Otimização Global Topográfica a problemas com restrições de desigualdade. O segundo objetivo é a aplicação deste método para a análise de estabilidade de fase em misturas termodinâmicas,o qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. A solução deste problema de otimização global é necessária para o cálculo do equilíbrio de fases, que é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Além disso, afim de ter uma avaliação inicial do potencial dessa técnica, primeiro vamos resolver 70 problemas testes, e então comparar o desempenho do método proposto aqui com o solver MIDACO, um poderoso software recentemente introduzido no campo da otimização global.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.