973 resultados para Evolutionary dynamics
Resumo:
The evolutionary dynamics existing between transposable elements (TEs) and their host genomes have been likened to an “arms race.” The selfish drive of TEs to replicate, in turn, elicits the evolution of host-mediated regulatory mechanisms aimed at repressing transpositional activity. It has been postulated that horizontal (cross-species) transfer may be one effective strategy by which TEs and other selfish genes can escape host-mediated silencing mechanisms over evolutionary time; however, to date, the most definitive evidence that TEs horizontally transfer between species has been limited to class II or DNA-type elements. Evidence that the more numerous and widely distributed retroelements may also be horizontally transferred between species has been more ambiguous. In this paper, we report definitive evidence for a recent horizontal transfer of the copia long terminal repeat retrotransposon between Drosophila melanogaster and Drosophila willistoni.
Resumo:
The P element, originally described in Drosophila melanogaster, is one of the best-studied eukaryotic transposable elements. In an attempt to understand the evolutionary dynamics of the P element family, an extensive phylogenetic analysis of 239 partial P element sequences has been completed. These sequences were obtained from 40 species in the Drosophila subgenus Sophophora. The phylogeny of the P element family is examined in the context of a phylogeny of the species in which these elements are found. An interesting feature of many of the species examined is the coexistence in the same genome of P sequences belonging to two or more divergent subfamilies. In general, P elements in Drosophila have been transmitted vertically from generation to generation over evolutionary time. However, four unequivocal cases of horizontal transfer, in which the element was transferred between species, have been identified. In addition, the P element phylogeny is best explained in numerous instances by horizontal transfer at various times in the past. These observations suggest that, as with some other transposable elements, horizontal transfer may play an important role in the maintenance of P elements in natural populations.
Resumo:
We analyze the evolutionary dynamics of three of the best-studied plant nuclear multigene families. The data analyzed derive from the genes that encode the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS), the gene family that encodes the enzyme chalcone synthase (Chs), and the gene family that encodes alcohol dehydrogenases (Adh). In addition, we consider the limited evolutionary data available on plant transposable elements. New Chs and rbcS genes appear to be recruited at about 10 times the rate estimated for Adh genes, and this is correlated with a much smaller average gene family size for Adh genes. In addition, duplication and divergence in function appears to be relatively common for Chs genes in flowering plant evolution. Analyses of synonymous nucleotide substitution rates for Adh genes in monocots reject a linear relationship with clock time. Replacement substitution rates vary with time in a complex fashion, which suggests that adaptive evolution has played an important role in driving divergence following gene duplication events. Molecular population genetic studies of Adh and Chs genes reveal high levels of molecular diversity within species. These studies also reveal that inter- and intralocus recombination are important forces in the generation allelic novelties. Moreover, illegitimate recombination events appear to be an important factor in transposable element loss in plants. When we consider the recruitment and loss of new gene copies, the generation of allelic diversity within plant species, and ectopic exchange among transposable elements, we conclude that recombination is a pervasive force at all levels of plant evolution.
Resumo:
To explore the evolutionary dynamics of genes in the major histocompatibility complex (Mhc) in nonmammalian vertebrates, we have amplified complete sequences of the polymorphic second (beta1) and third (beta2) exons of class II beta chain genes of songbirds. The pattern of nucleotide substitution in the antigen-binding site of sequences cloned from three behaviorally and phylogenetically divergent songbirds [scrub jays Aphelocoma coerulescens), red-winged blackbirds (Agelaius phoeniceus), and house finches (Carpodacus mexicanus) reveals that class II B genes of songbirds are subject to the same types of diversifying forces as those observed at mammalian class II loci. By contrast, the tree of avian class II B genes reveals that orthologous relationships have not been retained as in placental mammals and that, unlike class II genes in mammals, genes in songbirds and chickens have had very recent common ancestors within their respective groups. Thus, whereas the selective forces diversifying class II B genes of birds are likely similar to those in mammals, their long-term evolutionary dynamics appear to be characterized by much higher rates of concerted evolution.
Resumo:
A presente pesquisa tem como objetivo compreender a dinâmica de comportamento do solo sob escala macro e micromorfológica visualizados em topossequência, no que concerne aos agentes morfológicos que condicionam e contribuem para deflagração de processos erosivos. A área de estudo está inserida na sub-bacia hidrográfica do Laranja Azeda localizada na região centro-leste do estado de São Paulo, no município de São Carlos/SP, e têm fundamental importância por pertencer à bacia hidrográfica do Ribeirão Feijão, importante manancial urbano para a cidade. O planejamento de uso e ocupação adequados aos fatores físicos que compõe a dinâmica desta paisagem são essenciais visando a conservação e preservação dos recursos hídricos ali existentes, onde a expressiva ocorrência de processos erosivos são objetos de preocupação, já que estes podem causar assoreamento de rios e reservatórios. Utilizando uma metodologia multiescalar para seleção da área de pesquisa em detalhe e compreensão da organização e dinâmica da cobertura pedológica, foram utilizados os procedimentos propostos pela Análise Estrutural da Cobertura Pedológica e conceitos e técnicas da micromorfologia de solos. Verifica-se que a distribuição dos solos na Topossequência Manacá está estritamente correlacionada à transformação vertical do materialde origem em solo, em cuja vertente existe uma diferenciação litológica que condiciona a morfologia diferenciada, tanto em escala macromorfológica quanto micromorfológica. O terço superior e médio da vertente está associado à depósitos colúvio-eluvionaresda Formação Itaqueri, onde desenvolve-se um Latossolo Vermelho Amarelo. Já o terço inferior da vertente corresponde a um solo formado a partir dos arenitos da Formação Botucatu, sendo enquadrado enquanto Neossolo Quartzarênico. Com o auxílio técnicas de análise bidimensional de imagens retiradas das lâminas delgadas de solo, foi possível visualizar e quantificar a macroposidade ao longo da vertente, importante atributo morfológico que controla os fluxos de água e são agentes condicionantes para o desenvolvimento de processos erosivos. Conclui-se que a ocorrência de voçorocas no terço médio inferior da vertente é a materialização em forma de processos erosivos deste comportamento diferencial da massa do solo, onde portanto, na Topossequência Manacá a busca de equilíbrio dinâmico na vertente é induzida pela dinâmica genética evolutiva das formações geológicas que sustentam a paisagem, desencadeada em processos erosivos que tendem a progredir em desequilíbrio, a depender do manejo estabelecido para o local.
Resumo:
Esta comunicación se inscribe en un programa de investigación sobre las posibilidades de recuperación y perspectivas de futuro de las huertas tradicionales y regadíos históricos de Andalucía emprendido por un grupo de investigadores de la Universidad de Sevilla. Su objetivo es trasladar a la comunidad académica unas primeras reflexiones de este trabajo; a saber: 1) una somera descripción de sus rasgos patrimoniales y paisajísticos originarios, asociados a sus localizaciones primigenias; 2) un repaso de los procesos en los que estos espacios se han visto inmersos y sus resultados territoriales; y 3) unos primeros apuntes sobre las perspectivas funcionales que se abren a estas viejas agriculturas, derivadas de la asunción de nuevos marcos teórico-normativos (multifuncionalidad agraria, reconsideración de los espacios libres urbanos, Convenio Europeo del Paisaje) (REIG, 2002; FOLCH, 2003; CONSEJO DE EUROPA, 2000) y relacionadas con sus pautas actuales de localización.
Resumo:
Enhanced biological phosphorus removal (EBPR) is one of the best-studied microbially mediated industrial processes because of its ecological and economic relevance. Despite this, it is not well understood at the metabolic level. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, Candidatus Accumulibacter phosphatis.'' The analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of A. phosphatis in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the A. phosphatis genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism. The present study provides a much needed blueprint for a systems-level understanding of EBPR and illustrates that metagenomics enables detailed, often novel, insights into even well-studied biological systems.
Resumo:
Funded by European Union's Horizon 2020 Marie Sklodowska-Curie. Grant Number: 661211 Research Foundation Flanders (FWO). Grant Numbers: G.0055.08, G.0149.09, G.0308.13 FWO Research Network on Eco-Evolutionary dynamics French Ministère de l'Energie de l'Ecologie du Développement Durable et de la Mer through the EU FP6 BiodivERsA Eranet NERC. Grant Number: NE/J008001/1
Resumo:
Humanity is shaped by its relationships with microbes. From bacterial infections to the production of biofuels, industry and health often hinge on our control of microbial populations. Understanding the physiological and genetic basis of their behaviors is therefore of the highest importance. To this end I have investigated the genetic basis of plastic adhesion in Saccharomyces cerevisiae, the mechanistic and evolutionary dynamics of mixed species biofilms with Escherichia coli and S. cerevisiae, and the induction of filamentation in E. coli. Using a bulk segregant analysis on experimentally evolved populations, I detected 28 genes that are likely to mediate plastic adhesion in S. cerevisiae. With a variety of imaging and culture manipulation techniques, I found that particular strains of E. coli are capable of inducing flocculation and macroscopic biofilm formation via coaggregation with yeast. I also employed experimental evolution and microbial demography techniques to find that selection for mixed species biofilm association leads to lower fecundity in S. cerevisiae. Using culture manipulation and imaging techniques, I also found that E. coli are capable of inducing a filamentous phenotype with a secreted signal that has many of the qualities of a quorum sensing molecule.
Resumo:
El objeto de este artículo es estudiar la influencia del nivel educativo (capital cultural) en los procesos de precariedad-afluencia de la población española entre los años posteriores a la crisis de inicio de la década de 1990 y los años más duros de la crisis de 2007. A partir de los datos de las encuestas PHOGUE y ECV del Instituto Nacional de Estadística (INE) se han construido cuatro indicadores para medir la precariedad laboral, de ingresos, de salud y de vivienda y su distribución según distintas variables demográficas. Se pretende contrastar la hipótesis de que más educación significa más protección frente a la precariedad, estudiando diferentes condiciones de las condiciones de vida y existencia en momentos tanto de crecimiento como de crisis económica. Mediante un análisis multivariable se intenta determinar el nivel de impacto del capital cultural, alcance, evolución y, sobre todo, si sus efectos positivos o negativos están en proceso de expansión o desaceleración. El resultado tiene una doble aportación: de un lado, metodológica, consistente en la construcción de los indicadores; de otro lado, los resultados, con los que se puede reevaluar algunas generalizaciones sobre la pérdida de importancia del rol de la educación en las sociedades contemporáneas.
Resumo:
Assessing patterns of connectivity at the community and population levels is relevant to marine resource management and conservation. The present study reviews this issue with a focus on the western Indian Ocean (WIO) biogeographic province. This part of the Indian Ocean holds more species than expected from current models of global reef fish species richness. In this study, checklists of reef fish species were examined to determine levels of endemism in each of 10 biogeographic provinces of the Indian Ocean. Results showed that the number of endemic species was higher in the WIO than in any other region of the Indian Ocean. Endemic species from the WIO on the average had a larger body size than elsewhere in the tropical Indian Ocean. This suggests an effect of peripheral speciation, as previously documented in the Hawaiian reef fish fauna, relative to other sites in the tropical western Pacific. To explore evolutionary dynamics of species across biogeographic provinces and infer mechanisms of speciation, we present and compare the results of phylogeographic surveys based on compilations of published and unpublished mitochondrial DNA sequences for 19 Indo-Pacific reef-associated fishes (rainbow grouper Cephalopholis argus, scrawled butterflyfish Chaetodon meyeri, bluespot mullet Crenimugil sp. A, humbug damselfish Dascyllus abudafur/Dascyllus aruanus, areolate grouper Epinephelus areolatus, blacktip grouper Epinephelus fasciatus, honeycomb grouper Epinephelus merra, bluespotted cornetfish Fistularia commersonii, cleaner wrasse Labroides sp. 1, longface emperor Lethrinus sp. A, bluestripe snapper Lutjanus kasmira, unicornfishes Naso brevirosris, Naso unicornis and Naso vlamingii, blue-spotted maskray Neotrygon kuhlii, largescale mullet Planiliza macrolepis, common parrotfish Scarus psicattus, crescent grunter Terapon jarbua, whitetip reef shark Triaenodon obesus) and three coastal Indo-West Pacific invertebrates (blue seastar Linckia laevigata, spiny lobster Panulirus homarus, small giant clam Tridacna maxima). Heterogeneous and often unbalanced sampling design, paucity of data in a number of cases, and among-species discrepancy in phylogeographic structure precluded any generalization regarding phylogeographic patterns. Nevertheless, the WIO might have been a source of haplotypes in some cases and it also harboured an endemic clade in at least one case. The present survey also highlighted likely cryptic species. This may eventually affect the accuracy of the current checklists of species, which form the basis of some of the recent advances in Indo-West Pacific marine ecology and biogeography.
Resumo:
Perciformes are dominant in the marine environment, characterized as the largest and most diverse fish group. Some families, as Gerreidae, popularly known as silver jennies, carapebas, or mojarras have a high economic potential to marine fish farming, natural explotation and game fishing. Genetic information of these species are of fundamental importance for their management and production. Despite exist over 13,000 marine fish species described, only 2% were cytogenetically analyzed and less than 1% have some reproductive characteristics known. Induced breeding, cytogenetic characterization and cryopreservation of gametes, represent important areas in applied fish studies. In this project cytogenetic analyzes were performed to acess genetic aspects of Gerreidae species, distributed in coastal and estuarine regions of Northeast Brazil. Different methods for identifying chromosomal regions were employed using conventional techniques (Ag-NORs, C-banding), staining with base-specific fluorochromes (DAPI-CMA3), and physical mapping of ribosomal genes 18S and 5S rDNA, through hybridization in situ with fluorescent probes (FISH). The six species analyzed showed remarkable chromosome conservatism. The 18S and 5S ribosomal genes when analyzed in phylogenetic perspective demonstrate varied evolutionary dynamics, suggesting ocurrence of stasis process in some groups and greater dynamism in others. Double FISH with 18S and 5S probes showed both how efficient cytotaxonomic markers in the homogeneous karyotypes of this group of species. The karyotypic pattern identified in addition to the evolutionary aspects of karyotype, are suggestive of existence of low potential of post-zygotic barrier, prompting further research to prospect for artificial interspecific hybridization of these species of commercial importance
Resumo:
We generalise and extend the work of Iñarra and Laruelle (2011) by studying two person symmetric evolutionary games with two strategies, a heterogenous population with two possible types of individuals and incomplete information. Comparing such games with their classic homogeneous version vith complete information found in the literature, we show that for the class of anti-coordination games the only evolutionarily stable strategy vanishes. Instead, we find infinite neutrally stable strategies. We also model the evolutionary process using two different replicator dynamics setups, each with a different inheritance rule, and we show that both lead to the same results with respect to stability.
Resumo:
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.