927 resultados para Evoked somatosensory response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current American Academy of Neurology (AAN) guidelines for outcome prediction in comatose survivors of cardiac arrest (CA) have been validated before the therapeutic hypothermia era (TH). We undertook this study to verify the prognostic value of clinical and electrophysiological variables in the TH setting. A total of 111 consecutive comatose survivors of CA treated with TH were prospectively studied over a 3-year period. Neurological examination, electroencephalography (EEG), and somatosensory evoked potentials (SSEP) were performed immediately after TH, at normothermia and off sedation. Neurological recovery was assessed at 3 to 6 months, using Cerebral Performance Categories (CPC). Three clinical variables, assessed within 72 hours after CA, showed higher false-positive mortality predictions as compared with the AAN guidelines: incomplete brainstem reflexes recovery (4% vs 0%), myoclonus (7% vs 0%), and absent motor response to pain (24% vs 0%). Furthermore, unreactive EEG background was incompatible with good long-term neurological recovery (CPC 1-2) and strongly associated with in-hospital mortality (adjusted odds ratio for death, 15.4; 95% confidence interval, 3.3-71.9). The presence of at least 2 independent predictors out of 4 (incomplete brainstem reflexes, myoclonus, unreactive EEG, and absent cortical SSEP) accurately predicted poor long-term neurological recovery (positive predictive value = 1.00); EEG reactivity significantly improved the prognostication. Our data show that TH may modify outcome prediction after CA, implying that some clinical features should be interpreted with more caution in this setting as compared with the AAN guidelines. EEG background reactivity is useful in determining the prognosis after CA treated with TH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age-related differences in information processing have often been explained through deficits in older adults' ability to ignore irrelevant stimuli and suppress inappropriate responses through inhibitory control processes. Functional imaging work on young adults by Nelson and colleagues (2003) has indicated that inferior frontal and anterior cingulate cortex playa key role in resolving interference effects during a delay-to-match memory task. Specifically, inferior frontal cortex appeared to be recruited under conditions of context interference while the anterior cingulate was associated with interference resolution at the stage of response selection. Related work has shown that specific neural activities related to interference resolution are not preserved in older adults, supporting the notion of age-related declines in inhibitory control (Jonides et aI., 2000, West et aI., 2004b). In this study the time course and nature of these inhibition-related processes were investigated in young and old adults using high-density ERPs collected during a modified Sternberg task. Participants were presented with four target letters followed by a probe that either did or did not match one of the target letters held in working memory. Inhibitory processes were evoked by manipulating the nature of cognitive conflict in a particular trial. Conflict in working memory was elicited through the presentation of a probe letter in immediately previous target sets. Response-based conflict was produced by presenting a negative probe that had just been viewed as a positive probe on the previous trial. Younger adults displayed a larger orienting response (P3a and P3b) to positive probes relative to a non-target baseline. Older adults produced the orienting P3a and 3 P3b waveforms but their responses did not differentiate between target and non-target stimuli. This age-related change in response to targetness is discussed in terms of "early selection/late correction" models of cognitive ageing. Younger adults also showed a sensitivity in their N450 response to different levels of interference. Source analysis of the N450 responses to the conflict trials of younger adults indicated an initial dipole in inferior frontal cortex and a subsequent dipole in anterior cingulate cortex, suggesting that inferior prefrontal regions may recruit the anterior cingulate to exert cognitive control functions. Individual older adults did show some evidence of an N450 response to conflict; however, this response was attenuated by a co-occurring positive deflection in the N450 time window. It is suggested that this positivity may reflect a form of compensatory activity in older adults to adapt to their decline in inhibitory control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La douleur est une expérience subjective multidimensionnelle accompagnée de réponses physiologiques. Ces dernières sont régulées par des processus cérébraux qui jouent un rôle important dans la modulation spinale et cérébrale de la douleur. Cependant, les mécanismes de cette régulation sont encore mal définis et il est essentiel de bien les comprendre pour mieux traiter la douleur. Les quatre études de cette thèse avaient donc comme objectif de préciser les mécanismes endogènes de modulation de la douleur par la contreirritation (inhibition de la douleur par une autre douleur) et d’investiguer la dysfonction de ces mécanismes chez des femmes souffrant du syndrome de l’intestin irritable (Sii). Dans un premier temps, un modèle expérimental a été développé pour mesurer l’activité cérébrale en imagerie par résonance magnétique fonctionnelle concurremment à l’enregistrement du réflexe nociceptif de flexion (RIII : index de nociception spinale) et des réponses de conductance électrodermale (SCR : index d’activation sympathique) évoqués par des stimulations électriques douloureuses. La première étude indique que les différences individuelles d’activité cérébrale évoquée par les stimulations électriques dans les cortex orbitofrontal (OFC) et cingulaire sont associées aux différences individuelles de sensibilité à la douleur, de réactivité motrice (RIII) et de réactivité autonomique (SCR) chez des sujets sains. La deuxième étude montre que l’analgésie par contreirritation produite chez des sujets sains est accompagnée de l’inhibition de l’amygdale par OFC et d’une modulation du réflexe RIII par la substance grise périaqueducale (PAG) et le cortex somesthésique primaire (SI). Dans les troisième et quatrième études, il est montré que la contreirritation ne produit pas d’inhibition significative de la douleur et du réflexe RIII chez les patientes Sii en comparaison aux contrôles. De plus, les résultats indiquent que la sévérité des symptômes psychologiques est associée au déficit de modulation de la douleur et à une hypersensibilité diffuse chez les patientes Sii. Dans l’ensemble, cette thèse précise le rôle de certaines structures cérébrales dans les multiples composantes de la douleur et dans l’analgésie par contreirritation et montre que les patientes Sii présentent une dysfonction des mécanismes spinaux et cérébraux impliqués dans la perception et la modulation de la douleur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectif : Cette thèse a pour objectif de mieux comprendre l’effet du stress sur la douleur aiguë et chronique. Devis expérimental : 16 patients souffrant de douleur chronique lombalgique et 18 sujets contrôles ont participé à une étude d’imagerie par résonance magnétique (IRM) et ont collecté des échantillons de salive afin de quantifier les niveaux d’hormone de stress (i.e. cortisol) la journée de l’étude (réponse réactive) et durant les sept jours consécutifs suivants (réponse basale). Étude 1 : Une première étude a examiné le lien entre les niveaux de cortisol basal, le volume de l’hippocampe et l’activité cérébrale évoquée par la douleur thermique chez des patients souffrant de douleur chronique et les sujets contrôles. Les résultats révèlent que les patients souffrant de douleur chronique avaient des niveaux de cortisol plus élevés que ceux des sujets contrôles. Chez ces patients, un niveau élevé de cortisol était associé à un plus petit volume de l'hippocampe et à davantage d’activation dans le gyrus parahippocampique antérieure (une région impliquée dans l'anxiété anticipatoire et l'apprentissage associatif). De plus, une analyse de médiation a montré que le niveau de cortisol basal et la force de la réponse parahippocampique explique statistiquement l’association négative entre le volume de l'hippocampe et l'intensité de la douleur chronique. Ces résultats suggèrent que l’activité endocrinienne plus élevée chez les patients ayant un plus petit hippocampe modifie le fonctionnement du complexe hippocampique et contribue à l’intensité de la douleur chronique. Étude 2 : La deuxième étude a évalué la contribution de la réponse de stress réactif aux différences interindividuelles dans la perception de la douleur aiguë chez des patients souffrant de douleur chronique et chez des sujets normaux. Les deux groupes ont montré des augmentations significatives du niveau de cortisol en réponse à des stimulations nocives administrées dans un contexte d’IRM suggérant ainsi que la réactivité de l’axe hypothalamo-hypophyso-surrénalien est préservée chez les patients lombalgiques. De plus, les individus présentant une réponse hormonale de stress plus forte ont rapporté moins de douleur et ont montré une réduction de l'activation cérébrale dans le noyau accumbens, dans le cortex cingulaire antérieur (CCA), le cortex somatosensoriel primaire, et l'insula postérieure. Des analyses de médiation ont indiqué que la douleur liée à l'activité du CCA explique statistiquement la relation entre la réponse de stress et le désagrément de la douleur rapportée par les participants. Enfin, des analyses complémentaires ont révélé que le stress réduit la connectivité fonctionnelle entre le CCA et le tronc cérébral pendant la douleur aiguë. Ces résultats indiquent que le stress réactif module la douleur et contribue à la variabilité interindividuelle de l'activité cérébrale et la réponse affective à la douleur. Discussion : Conjointement, ces études suggèrent dans un premier temps que la douleur chronique peut être exacerbée par une réponse physiologique inadéquate de l'organisme exposé à un stress récurrent, et en un second temps, que le CCA contribuerait à l'analgésie induite par le stress. Sur le plan conceptuel, ces études renforcent le point de vue prédominant suggérant que la douleur chronique induit des changements dans les systèmes cérébraux régissant les fonctions motivationnelles et affective de la douleur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares the auditory steady state response (ASSR) thresholds with the click-evoked and tone burst auditory brainstem response (ABR) thresholds in their ability to predict known behavioral thresholds in normal-hearing adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response to painful stimulation depends not only on peripheral nociceptive input but also on the cognitive and affective context in which pain occurs. One contextual variable that affects the neural and behavioral response to nociceptive stimulation is the degree to which pain is perceived to be controllable. Previous studies indicate that perceived controllability affects pain tolerance, learning and motivation, and the ability to cope with intractable pain, suggesting that it has profound effects on neural pain processing. To date, however, no neuroimaging studies have assessed these effects. We manipulated the subjects' belief that they had control over a nociceptive stimulus, while the stimulus itself was held constant. Using functional magnetic resonance imaging, we found that pain that was perceived to be controllable resulted in attenuated activation in the three neural areas most consistently linked with pain processing: the anterior cingulate, insular, and secondary somatosensory cortices. This suggests that activation at these sites is modulated by cognitive variables, such as perceived controllability, and that pain imaging studies may therefore overestimate the degree to which these responses are stimulus driven and generalizable across cognitive contexts. [References: 28]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. In this study we therefore measured spatiotemporal cortical haemodynamic responses to somatosensory stimulation in awake rats using optical imaging spectroscopy. Trained, restrained animals received non-noxious stimulation of the whisker pad via chronically implanted stimulating microwires whilst optical recordings were made from the contralateral somatosensory cortex through a thin cranial window. The responses we measure from un-anaesthetised animals are substantially different from those reported in previous studies which have used anaesthetised animals. These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using previously published data from the whisker barrel cortex of anesthetized rodents (Berwick et al 2008 J. Neurophysiol. 99 787–98) we investigated whether highly spatially localized stimulus-evoked cortical hemodynamics responses displayed a linear time-invariant (LTI) relationship with neural activity. Presentation of stimuli to individual whiskers of 2 s and 16 s durations produced hemodynamics and neural activity spatially localized to individual cortical columns. Two-dimensional optical imaging spectroscopy (2D-OIS) measured hemoglobin responses, while multi-laminar electrophysiology recorded neural activity. Hemoglobin responses to 2 s stimuli were deconvolved with underlying evoked neural activity to estimate impulse response functions which were then convolved with neural activity evoked by 16 s stimuli to generate predictions of hemodynamic responses. An LTI system more adequately described the temporal neuro-hemodynamics coupling relationship for these spatially localized sensory stimuli than in previous studies that activated the entire whisker cortex. An inability to predict the magnitude of an initial 'peak' in the total and oxy- hemoglobin responses was alleviated when excluding responses influenced by overlying arterial components. However, this did not improve estimation of the hemodynamic responses return to baseline post-stimulus cessation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABAA agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by ∼79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article investigates the relation between stimulus-evoked neural activity and cerebral hemodynamics. Specifically, the hypothesis is tested that hemodynamic responses can be modeled as a linear convolution of experimentally obtained measures of neural activity with a suitable hemodynamic impulse response function. To obtain a range of neural and hemodynamic responses, rat whisker pad was stimulated using brief (less than or equal to2 seconds) electrical stimuli consisting of single pulses (0.3 millisecond, 1.2 mA) combined both at different frequencies and in a paired-pulse design. Hemodynamic responses were measured using concurrent optical imaging spectroscopy and laser Doppler flowmetry, whereas neural responses were assessed through current source density analysis of multielectrode recordings from a single barrel. General linear modeling was used to deconvolve the hemodynamic impulse response to a single "neural event" from the hemodynamic and neural responses to stimulation. The model provided an excellent fit to the empirical data. The implications of these results for modeling schemes and for physiologic systems coupling neural and hemodynamic activity are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symptoms evoked by Thalassophryne nattereri fish envenomation include local oedema, severe pain and intense necrosis with strikingly inefficient healing, continuing for several weeks or months. Investigations carried out in our laboratory showed that, in the venom-induced acute inflammation, thrombosis in venules and constrictions in arterioles were highly visible, in contrast to a notable lack of inflammatory cell. Nevertheless, the reason that the venom toxins favour delayed local inflammatory response is poorly defined. In this study, we analysed the movement of leucocytes after T. nattereri venom injection in the intraplantar region of Swiss mice, the production of pro-inflammatory mediators and the venom potential to elicit matrix metalloproteinase production and extracellular matrix degradation. Total absence of mononuclear and neutrophil influx was observed until 14 days, but the venom stimulates pro-inflammatory mediator secretion. Matrix metalloproteinases (MMP)-2 and MMP-9 were detected in greater quantities, accompanied by tissue degradation of collagenous fibre. An influx of mononuclear cells was noted very late and at this time the levels of IL-6, IL-1 beta and MMP-2 remained high. Additionally, the action of venom on the cytoskeletal organization was assessed in vitro. Swift F-actin disruption and subsequent loss of focal adhesion was noted. Collectively these findings show that the altered specific interaction cell-matrix during the inflammatory process creates an inadequate environment for infiltration of inflammatory cells.