910 resultados para Event-based Model
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests efficient design and operation philosophy, construction methodology and logical insurance plans. The risk-based model uses Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.
Resumo:
Adapting to blurred images makes in-focus images look too sharp, and vice-versa (Webster et al, 2002 Nature Neuroscience 5 839 - 840). We asked how such blur adaptation is related to contrast adaptation. Georgeson (1985 Spatial Vision 1 103 - 112) found that grating contrast adaptation followed a subtractive rule: perceived (matched) contrast of a grating was fairly well predicted by subtracting some fraction k(~0.3) of the adapting contrast from the test contrast. Here we apply that rule to the responses of a set of spatial filters at different scales and orientations. Blur is encoded by the pattern of filter response magnitudes over scale. We tested two versions - the 'norm model' and 'fatigue model' - against blur-matching data obtained after adaptation to sharpened, in-focus or blurred images. In the fatigue model, filter responses are simply reduced by exposure to the adapter. In the norm model, (a) the visual system is pre-adapted to a focused world and (b) discrepancy between observed and expected responses to the experimental adapter leads to additional reduction (or enhancement) of filter responses during experimental adaptation. The two models are closely related, but only the norm model gave a satisfactory account of results across the four experiments analysed, with one free parameter k. This model implies that the visual system is pre-adapted to focused images, that adapting to in-focus or blank images produces no change in adaptation, and that adapting to sharpened or blurred images changes the state of adaptation, leading to changes in perceived blur or sharpness.
Resumo:
The starting point of this research was the belief that manufacturing and similar industries need help with the concept of e-business, especially in assessing the relevance of possible e-business initiatives. The research hypotheses was that it should be possible to produce a systematic model that defines, at a useful level of detail, the probable e-business requirements of an organisation based on objective criteria with an accuracy of 85%-90%. This thesis describes the development and validation of such a model. A preliminary model was developed from a variety of sources, including a survey of current and planned e-business activity and representative examples of e-business material produced by e-business solution providers. The model was subject to a process of testing and refinement based on recursive case studies, with controls over the improving accuracy and stability of the model. Useful conclusions were also possible as to the relevance of e-business functions to the case study participants themselves. Techniques were evolved to synthesise the e-business requirements of an organisation and present them at a management summary level of detail. The results of applying these techniques to all the case studies used in this research were discussed. The conclusion of the research was that the case study methodology employed was successful. A model was achieved suitable for practical application in a manufacturing organisation requiring help with a requirements definition process.
Resumo:
We investigate knowledge exchange among commercial organizations, the rationale behind it, and its effects on the market. Knowledge exchange is known to be beneficial for industry, but in order to explain it, authors have used high-level concepts like network effects, reputation, and trust. We attempt to formalize a plausible and elegant explanation of how and why companies adopt information exchange and why it benefits the market as a whole when this happens. This explanation is based on a multiagent model that simulates a market of software providers. Even though the model does not include any high-level concepts, information exchange naturally emerges during simulations as a successful profitable behavior. The conclusions reached by this agent-based analysis are twofold: 1) a straightforward set of assumptions is enough to give rise to exchange in a software market, and 2) knowledge exchange is shown to increase the efficiency of the market.
Resumo:
The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.
Resumo:
Measuring variations in efficiency and its extension, eco-efficiency, during a restructuring period in different industries has always been a point of interest for regulators and policy makers. This paper assesses the impacts of restructuring of procurement in the Iranian power industry on the performance of power plants. We introduce a new slacks-based model for Malmquist-Luenberger (ML) Index measurement and apply it to the power plants to calculate the efficiency, eco-efficiency, and technological changes over the 8-year period (2003-2010) of restructuring in the power industry. The results reveal that although the restructuring had different effects on the individual power plants, the overall growth in the eco-efficiency of the sector was mainly due to advances in pure technology. We also assess the correlation between efficiency and eco-efficiency of the power plants, which indicates a close relationship between these two steps, thus lending support to the incorporation of environmental factors in efficiency analysis. © 2014 Elsevier Ltd.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
The paper presents a short review of some systems for program transformations performed on the basis of the internal intermediate representations of these programs. Many systems try to support several languages of representation of the source texts of programs and solve the task of their translation into the internal representation. This task is still a challenge as it is effort-consuming. To reduce the effort, different systems of translator construction, ready compilers with ready grammars of outside designers are used. Though this approach saves the effort, it has its drawbacks and constraints. The paper presents the general idea of using the mapping approach to solve the task within the framework of program transformations and overcome the disadvantages of the existing systems. The paper demonstrates a fragment of the ontology model of high-level languages mappings onto the single representation and gives the example of how the description of (a fragment) a particular mapping is represented in accordance with the ontology model.
Resumo:
In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.
Resumo:
Siberian boreal forests are expected to expand northwards in the course of global warming. However, processes of the treeline ecotone transition, as well astiming and related climate feedbacks are still not understood. Here, we present 'Larix Vegetation Simulator' LAVESI, an individual-based spatially-explicit model that can simulate Larix gmelinii (RUPR.) RUPR. stand dynamics in an attempt to improve our understanding about past and future treeline movements under changing climates. The relevant processes (growth, seed production and dispersal, establishment and mortality) are incorporated and adjusted to observation data mainly gained from the literature. Results of a local sensitivity analysis support the robustness of the model's parameterization by giving relatively small sensitivity values. We tested the model by simulating tree stands under modern climate across the whole Taymyr Peninsula, north-central Siberia (c. 64-80° N; 92-119° E). We find tree densities similar to observed forests in the northern to mid-treeline areas, but densities are overestimated in the southern parts of the simulated region. Finally, from a temperature-forcing experiment, we detect that the responses of tree stands lag the hypothetical warming by several decades, until the end of 21st century. With our simulation experiments we demonstrate that the newly-developed model captures the dynamics of the Siberian latitudinal treeline.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
OSAN, R. , TORT, A. B. L. , AMARAL, O. B. . A mismatch-based model for memory reconsolidation and extinction in attractor networks. Plos One, v. 6, p. e23113, 2011.