959 resultados para Evaporation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic integrated pixel consisting of an organic light-emitting diode driven by an organic thin-film field-effect transistor (OTFT) was fabricated by a full evaporation method oil a transparent glass substrate. The OTFT was designed as a top-gate Structure, and the insulator is composed of a double-layer polymer of Nylon 6 and Teflon to lower the operation voltage and the gate-leakage current, and improve the device stability. The field-effect mobility of the OTFT is more than 0.5 cm(2) V-1 s(-1), and the on/off ratio is larger than 10(3). The brightness of the pixel reached as large as 300 cd m(-2) at a driving current of 50 mu A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.The evolution of capillary forces during evaporation and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimentally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension of the liquid bridges. During both evaporation and extension, the change of interparticle capillary forces consists in a force decrease to zero either gradually or via rupture of the bridge. At small separations between the grains (short & wide bridges) during evaporation and at large volumes during extension, there is a slight initial increase of force. During evaporation, the capillary force decreases slowly at the beginning of the process and quickly at the end of the process; during extension, the capillary force decreases quickly at the beginning and slowly at the end of the process. Rupture during evaporation of the bridges occurs most abruptly for bridges with wider separations (tall and thin), sometimes occurring after only 25% of the water volume was evaporated. The evolution (pinning/depinning) of two geometrical characteristics of the bridge, the diameter of the three-phase contact line and the “apparent” contact angle at the solid/liquid/gas interface, seem to control the capillary force evolution. The findings are of relevance to the mechanics of unsaturated granular media in the final phase of drying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory. For the first time, cospatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of nonthermal electrons accelerated during the impulsive phase of an M2.2 flare. When we assumed a thick-target model, the injected electron spectrum was found to have a spectral index of similar to 7.3, a low-energy cutoff of similar to 20 keV, and a resulting flux of >= 4 x10(10) ergs cm(-2) s(-1). The dynamic response of the atmosphere was determined using CDS spectra; we found a mean upflow velocity of 230 +/- 38 km s(-1) in Fe (XIX) (592.23 angstrom) and associated downflows of 36 +/- 16 and 43 +/- 22 km s(-1) at chromospheric and transition region temperatures, respectively, relative to an averaged quiet- Sun spectra. The errors represent a 1 j dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of selected formulation variables on the release of chlorhexidine from poly(epsilon-caprolactone) films was evaluated in vitro using a complete factorial experimental design. Repeated measures analysis of variance showed chlorhexidine type (diacetate or base), drug load (10, 20 or 30% w/w), chlorhexidine particle size (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the process variables, pH of aqueous phase, rate of addition of organic, polymeric, drug-containing phase to aqueous phase, organic:aqueous phase volume ratio and aqueous phase temperature on the entrapment of propranolol hydrochloride in ethylcellulose (N4) microspheres prepared by the solvent evaporation method were examined using a factorial design. The observed range of drug entrapment was 1.43 +/- 0.02%w/w (pH 6, 25 degrees C, phase volume ratio 1:10, fast rate of addition) to 16.63 +/- 0.92%w/w (pH 9, 33 degrees C, phase volume ratio 1:10, slow rate of addition) which corresponded to mean entrapment efficiencies of 2.86 and 33.26, respectively. Increased pH, increased temperature and decreased rate of addition significantly enhanced entrapment efficiency. However, organic:aqueous phase volume ratio did not significantly affect drug entrapment. Statistical interactions were observed between pH and rate of addition, pH and temperature, and temperature and rate of addition. The observed interactions involving pH are suggested to be due to the abilities of increased temperature and slow rate of addition to sufficiently enhance the solubility of dichloromethane in the aqueous phase, which at pH 9, but not pH 6, allows partial polymer precipitation prior to drug partitioning into the aqueous phase. The interaction between temperature and rate of addition is due to the relative lack of effect of increased temperature on drug entrapment following slow rate of addition of the organic phase. In comparison to the effects of pH on drug entrapment, the contributions of the other physical factors examined were limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of four process factors: pH, emulsifier (gelatin) concentration, mixing and batch, on the % w/w entrapment of propranolol hydrochloride in ethylcellulose microcapsules prepared by the solvent evaporation process were examined using a factorial design. In this design the minimum % w/w entrapments of propranolol hydrochloride were observed whenever the external aqueous phase contained 1.5% w/v gelatin at pH 6.0 (0.71-0.91% w/w) whereas maximum entrapments occurred whenever the external aqueous phase was composed of 0.5% w/v gelatin at pH 9.0,(8.9-9.1% w/w). The theoretical maximum loading was 50% w/w. Statistical evaluation of the results by analysis of variance showed that emulsifer (gelatin) concentration and pH, but not mixing and batch significantly affected entrapment. An interaction between pH and gelatin concentration was observed in the factorial design which was accredited to the greater effect of gelatin concentration on % w/w entrapment at pH 9.0 than at pH 6.0. Maximum theoretical entrapment was achieved by increasing the pH of the external phase to 12.0. Marked increases in drug entrapment were observed whenever the pH of the external phase exceeded the pK(2) of propranolol hydrochloride. It was concluded that pH, and hence ionisation, was the greatest determinant of entrapment of propranolol hydrochloride into microcapsules prepared by the solvent evaporation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine release from ethylcellulose films east from solvents of different dichloromethane/ethanol compositions was studied. Release rate was proportional to the square root of time. Increased ethanol content within the casting solvent significantly enhanced release rate. Release rate and cumulative mass released at different time periods (5, 10, 15 and 25 days) were proportional to the solubility parameter of the casting solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaporation of exoplanetary atmospheres is thought to be driven by high-energy irradiation. However, the actual mass loss rates are not well constrained. Co-I Kipping has recently discovered that the star KOI-314, an M1V dwarf at 65 pc distance, is orbited by two earth-sized planets, the inner one of them rocky and the outer one gaseous (P_orb = 14d and 23d). Other recent works have shown an abundance of small rocky planets in very close orbits around their host stars, suggesting that the stellar high-energy irradiation evaporates away gaseous envelopes. KOI-314 is the first nearby system in which earth-sized planets of both types are detected, allowing us to constrain the efficiency of planetary evaporation if the stellar X-ray irradiation is measured. We therefore propose a 10 ks Chandra ACIS-S pointing to determine the stellar X-ray luminosity and hardness ratio. The accuracy of the orbital solution decreases quickly due to Transit-Timing Variations, which is why we ask for DDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work introduces a novel idea for wireless energy transfer, proposing for the first time the unit-cell of an indoor localization and RF harvesting system embedded into the floor. The unit-cell is composed by a 5.8 GHz patch antenna surrounded by a 13.56 MHz coil. The coil locates a device and activate the patch which, connected to a power grid, radiates to wirelessly charge the localized device. The HF and RF circuits co-existence and functionality are demonstrated in this paper, the novelty of which is also in the adoption of low cost and most of all ecofriendly materials, such as wood and cork, as substrates for electronics.