992 resultados para Euler equations for gas dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly occupied. Our method could be applied to other boson fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a quantitative study of the growth process of 87Rb Bose-Einstein condensates. By continuous evaporative cooling we directly control the thermal cloud from which the condensate grows. We compare the experimental data with the results of a theoretical model based on quantum kinetic theory. We find quantitative agreement with theory for the situation of strong cooling, whereas in the weak cooling regime a distinctly different behavior is found in the experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes U2DE, a finite-volume code that numerically solves the Euler equations. The code was used to perform multi-dimensional simulations of the gradual opening of a primary diaphragm in a shock tube. From the simulations, the speed of the developing shock wave was recorded and compared with other estimates. The ability of U2DE to compute shock speed was confirmed by comparing numerical results with the analytic solution for an ideal shock tube. For high initial pressure ratios across the diaphragm, previous experiments have shown that the measured shock speed can exceed the shock speed predicted by one-dimensional models. The shock speeds computed with the present multi-dimensional simulation were higher than those estimated by previous one-dimensional models and, thus, were closer to the experimental measurements. This indicates that multi-dimensional flow effects were partly responsible for the relatively high shock speeds measured in the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the earlier model of condensate growth of Davis et at (Davis M J, Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include the effect of gravity in a magnetic trap. We carry out calculations to model the experiment reported by Kohl et al (Kohl M, Davis M J, Gardiner C W, Hansch T and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation of a rubidium Bose-Einstein condensate for a range of evaporative cooling parameters. We find that, in the regime where our model is valid, the theoretical curves agree with all the experimental data with no fitting parameters. However, for the slowest cooling of the gas the theoretical curve deviates significantly from the experimental curves. It is possible that this discrepancy may be related to the formation of a quasicondensate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the Oxford University Gun Tunnel has been estimated using a quasi-one-dimensional simulation of the facility gas dynamics. The modelling of the actual facility area variations so as to adequately simulate both shock reflection and flow discharge processes has been considered in some detail. Test gas stagnation pressure and temperature histories are compared with measurements at two different operating conditions - one with nitrogen and the other with carbon dioxide as the test gas. It is demonstrated that both the simulated pressures and temperatures are typically within 3% of the experimental measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genuinely multidimensional schemes, hyperbolic systems, wave equations, Euler equations, evolution Galerkin schemes, space-time conservative methods, high order accuracy, shock solutions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperbolic systems, non-relativistic and relativistic Euler equations, kinetic schemes, conservation laws, discontinuous solutions, high order accuracy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.