961 resultados para Estimated breeding values


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foram simuladas estruturas de dados em modelos mistos representando o teste de 100 reprodutores, sendo cada reprodutor acasalado com 10 matrizes (total de 1000 matrizes), originando em cada acasalamento 2 proles, totalizando 2000 proles (vinte proles por reprodutor). De cada combinação reprodutor e matriz, dez proles tiveram seu fenótipo expresso no ambiente de baixa produção (Estrato 1) e, a outra metade, no ambiente de alta produção (Estrato 2). A simulação foi realizada de forma a representar diferentes situações de presença de heterogeneidade de variâncias, combinando-se as origens da heterogeneidade, de natureza genética e ambiental. Na presença de heterogeneidade residual, o valor estimado para o componente de variância residual, considerando homogeneidade de variâncias se aproximou do valor médio das variâncias entre os estratos. Houve superestimação, também, do componente de variância genético aditivo. Ao simular heterogeneidade de variância de origem genética, observou-se que a estimação desse componente situou-se em valor intermediário aos simulados. Nessa situação, o componente de variância residual estimado foi próximo do valor simulado, indicando que a heterogeneidade de variâncias quando proveniente de fatores genéticos, não interfere, substancialmente, sobre e estimação do componente de variância residual. Na simulação de dados com presença de heterogeneidade tanto de origem genética quanto ambiental (estrutura de dados 4), conduziu a estimação de componentes de variâncias intermediários aos valores simulados em cada estrato. Assim, observa-se que, mesmo quando os reprodutores apresentam proles bem distribuídas em ambos os estratos, a heterogeneidade de variância proveniente de fatores não genético provoca distorções sobre a estimação da variância genética aditiva. Mas por outro lado, quando a heterogeneidade de variância é decorrente de fatores genéticos, não há grande interferência sobre a estimativa da variância residual, tal comportamento pode ser explicado pela incorporação da matriz de parentesco na estimação do componente de variância genético aditivo, possibilitando discriminar melhor a origem da diferenças entre variâncias. Na estrutura onde a variância residual foi heterogênea a estimativa de herdabilidade foi menor em relação à estrutura de homogeneidade de variâncias. Por outro lado, quando somente a variância genética aditiva foi heterogênea, a estimativa de herdabilidade, considerando-se apenas o estrato de alta variabilidade genética, foi inflacionada pela superestimação da variância genética aditiva. No entanto, a estimativa de herdabilidade obtida, desconsiderando essa fonte de heterogeneidade de variância, foi próxima à situação de homogeneidade de variância, indicando que, quando os reprodutores possuem boa distribuição de proles em diferentes ambientes, as estimativas relacionadas ao efeito genético são ponderadas pelo desempenho dos animais em cada ambiente. As correlações de Spearman e de Pearson entre os valores genéticos preditos dos reprodutores, para todas as situações, foram maiores que 0,90. O resultado indica que, mesmo havendo presença de heterogeneidade de variância genética e/ou ambiental, se os reprodutores possuem proles bem distribuídas entre os ambientes (estratos heterogêneos) a classificação do mérito genético não se altera, o que era esperado, pois em análises unicarácter, quando ocorre uma fonte de viés na avaliação genética, ela é comum a todos os indivíduos. Na situação em que foi imposta a estrutura de dados à presença de heterogeneidade de variância residual com número de número desigual de proles por reprodutor nos estratos, provocou superestimação dos componentes de variância. Porém mesmo havendo alteração na magnitude dos valores genéticos preditos para os reprodutores, a heterogeneidade de variância não alterou a classificação entre os reprodutores todas as correlações de ordem foram próximas à unidade. O efeito da heterogeneidade de variância, oriunda de fatores ambientais, ocasiona em maiores distorções sobre a avaliação genética animal, em relação, quando a mesma é proveniente de causas genéticas. A conexidade genética entre diferentes ambientes, dilui o efeito da heterogeneidade de variância, tanto de origem genética, quanto ambiental, na predição de valores genéticos dos reprodutores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genomics has been propagated as a paradigm shifting innovation in livestock during the last decade. The possibility of predicting breeding values using genomic information has revolutionized the dairy cattle industry and is now being implemented in beef cattle. In this paper we discuss how genomics is changing cattle breeding through genomic selection, and how this change is creating new ways to articulate assisted reproduction technologies with animal breeding. We also debate that the scientific community is still starting the long journey to reveal the functional aspects of the cattle genome, and that knowledge in this field is the frontier to a whole new venue for the development of novel applications in the livestock sector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to estimate variance components and genetic parameters for accumulated 305-day milk yield (MY305) over multiple ages, from 24 to 120 months of age, applying random regression (RRM), repeatability (REP) and multi-trait (MT) models. A total of 4472 lactation records from 1882 buffaloes of the Murrah breed were utilized. The contemporary group (herd-year-calving season) and number of milkings (two levels) were considered as fixed effects in all models. For REP and RRM, additive genetic, permanent environmental and residual effects were included as random effects. MT considered the same random effects as did REP and RRM with the exception of permanent environmental effect. Residual variances were modeled by a step function with 1, 4, and 6 classes. The heritabilities estimated with RRM increased with age, ranging from 0.19 to 0.34, and were slightly higher than that obtained with the REP model. For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 0.32 (94 months of age). The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT models were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, respectively. The rank correlation between breeding values for MY305 at different ages predicted by REP, MT, and RRM were high. It seems that a linear and quadratic Legendre polynomial to model the additive genetic and animal permanent environmental effects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 genetic variation with age.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)