914 resultados para Errors and blunders, Literary.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ARK-XXIII/3 along track lines of 7248 NM total length in the Arctic Ocean during transits and stationary work. Data were achieved on the transit from Iceland through the Northwestern Passage and the Beaufort Sea to the East Siberian Sea, crossing Northwind Ridge and Chukchi Plateau. The continental margin of East Siberian was surveyed by several wide spaced transects for almost three weeks. The Mendeleev Ridge and the surrounding deep sea bassins were investigated by a transect of about 1000 NM length, located at 80°-81°N. Lomonosov Ridge and Gakkel Ridge were also crossed. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle, 120° in shallow water areas. The refraction correction was achieved utilizing 14 CTD profiles measured during the cruise or by the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XV/2 along track lines of approximately 10200 NM total length during transits, surveys and partly during stationary work, mainly in the Scotia Sea and the Weddell Sea. Areal multibeam surveys were performed in the vicinity of the South Shetland trench, the Bransfield Basin, the South Sandwich trench, and off the Ekstrom Ice Shelf for time periods of three to eight days. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle, in some shallow areas 120°. The refraction correction was achieved utilizing sound velocity profiles sampled during the cruise, and by the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected without operator supervision on R/V Polarstern cruise ANT-XV/3 during 19 days along track lines of about 1100 NM total length. Data were achieved during transits and stationary work in the eastern Weddell Sea off the Riiser-Larsen Ice Shelf between Halley Bay and Atka Bay. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected without operator supervision on R/V Polarstern cruise ANT-XVI/2 along track lines of approximately 6800 NM. Data were achieved during transits and stationary work in the Atlantic Ocean, the South and the East Weddell Sea; amongst others between Atka Bay and Halley Bay, at the northern part of Filchner Trough, and off the Ronne Ice Shelf. A transect along the Greenwich meridian was taken between 66.5°S and 48°S during the transit from Neumayer to Cape Town. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected without operator supervision on R/V Polarstern cruise ANT-XVI/3 along track lines of approximately 6700 NM. Data were achieved during transits and stationary work in the Weddell Sea off the Ekstrom Ice Shelf and the Jelbart Ice Shelf and in the South Atlantic Ocean. An area of 140 x 140 km was surveyed with 15 km transect space at about 49.5°S and 20°E. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XXII/3 along track lines of approximately 8000 NM total length during transits and partly during stationary work. Data were achieved on a transect along the Greenwich meridian, across the Weddell Sea from Kapp Norvegia to Joinville Island, across the Powell Basin, furthermore in the Drake Passage and west of Antarctic Peninsula. Short bathymetric surveys were carried out on the continental slope off Kapp Norvegia and Fimbulisen, and in the area of the Weddell Abyssal Plain. The multibeam sonar system Hydrosweep DS-2 was operated mainly in the HDBE softbeam mode with 240 depth values per swath and a receiving coverage of 100°. The refraction correction was achieved utilizing CTD profiles or the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XIX/1 on track lines of about 5,200 NM total length in the Atlantic Ocean during the transit from Bremerhaven to Cape Town. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The refraction correction was achieved utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
This article proposes a methodology to address the urban evolutionary process, demonstrating how it is reflected in literature. It focuses on “literary space,” presented as a territory defined by the period setting or as evoked by the characters, which can be georeferenced and drawn on a map. It identifies the different locations of literary space in relation to urban development and the economic, political, and social context of the city. We suggest a new approach for mapping a relatively comprehensive body of literature by combining literary criticism, urban history, and geographic information systems (GIS). The home-range concept, used in animal ecology, has been adapted to reveal the size and location of literary space. This interdisciplinary methodology is applied in a case study to nineteenth- and twentieth-century novels involving the city of Lisbon. The developing concepts of cumulative literary space and common literary space introduce size calculations in addition to location and structure, previously developed by other researchers. Sequential and overlapping analyses of literary space throughout time have the advantage of presenting comparable and repeatable results for other researchers using a different body of literary works or studying another city. Results show how city changes shaped perceptions of the urban space as it was lived and experienced. A small core area, correspondent to a part of the city center, persists as literary space in all the novels analyzed. Furthermore, the literary space does not match the urban evolution. There is a time lag for embedding new urbanized areas in the imagined literary scenario.
Resumo:
This study examined the validity and reliability of the French version of two observer-rated measures developed to assess cognitive errors (cognitive errors rating system [CERS]) [6] and coping action patterns (coping action patterns rating system [CAPRS]) [22,24]. The CE measures 14 cognitive errors, broken down according to their valence positive or negative (see the definitions by A.T. Beck), and the CAP measures 12 coping categories, based on an comprehensive review literature, each broken down into three levels of action (affective, behavioural, cognitive). Thirty (N = 30) subjects recruited in a community sample participated in the study. They were interviewed according to a standardized clinical protocol: these interviews were transcribed and analysed with both observer-rated systems. Results showed that the inter-rater reliability of the two measures is good and that their internal validity is satisfactory, due to a non-significant canonical correlation between CAP and CE. With regard to discriminant validity, we found a non-significant canonical correlation between CAPRS and CISS, one of most widely used self-report questionnaire measuring coping. The same can be said for the correlation with a self-report questionnaire measuring symptoms (SCL-90-R). These results confirm the absence of confounds in the assessment of cognitive errors and of coping as assessed by these observer-rated scales and add an argument in favour of the French validation of the CE-CAP rating scales. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
In a system where tens of thousands of words are made up of a limited number of phonemes, many words are bound to sound alike. This similarity of the words in the lexicon as characterized by phonological neighbourhood density (PhND) has been shown to affect speed and accuracy of word comprehension and production. Whereas there is a consensus about the interfering nature of neighbourhood effects in comprehension, the language production literature offers a more contradictory picture with mainly facilitatory but also interfering effects reported on word production. Here we report both of these two types of effects in the same study. Multiple regression mixed models analyses were conducted on PhND effects on errors produced in a naming task by a group of 21 participants with aphasia. These participants produced more formal errors (interfering effect) for words in dense phonological neighbourhoods, but produced fewer nonwords and semantic errors (a facilitatory effect) with increasing density. In order to investigate the nature of these opposite effects of PhND, we further analysed a subset of formal errors and nonword errors by distinguishing errors differing on a single phoneme from the target (corresponding to the definition of phonological neighbours) from those differing on two or more phonemes. This analysis confirmed that only formal errors that were phonological neighbours of the target increased in dense neighbourhoods, while all other errors decreased. Based on additional observations favouring a lexical origin of these formal errors (they exceeded the probability of producing a real-word error by chance, were of a higher frequency, and preserved the grammatical category of the targets), we suggest that the interfering effect of PhND is due to competition between lexical neighbours and target words in dense neighbourhoods.
Resumo:
Abstract Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used.
Resumo:
Measurement is the act or the result of a quantitative comparison between a given quantity and a quantity of the same kind chosen as a unit. It is generally agreed that all measurements contain errors. In a measuring system where both a measuring instrument and a human being taking the measurement using a preset process, the measurement error could be due to the instrument, the process or the human being involved. The first part of the study is devoted to understanding the human errors in measurement. For that, selected person related and selected work related factors that could affect measurement errors have been identified. Though these are well known, the exact extent of the error and the extent of effect of different factors on human errors in measurement are less reported. Characterization of human errors in measurement is done by conducting an experimental study using different subjects, where the factors were changed one at a time and the measurements made by them recorded. From the pre‐experiment survey research studies, it is observed that the respondents could not give the correct answers to questions related to the correct values [extent] of human related measurement errors. This confirmed the fears expressed regarding lack of knowledge about the extent of human related measurement errors among professionals associated with quality. But in postexperiment phase of survey study, it is observed that the answers regarding the extent of human related measurement errors has improved significantly since the answer choices were provided based on the experimental study. It is hoped that this work will help users of measurement in practice to better understand and manage the phenomena of human related errors in measurement.
Resumo:
Rationale: In UK hospitals, the preparation of all total parenteral nutrition (TPN) products must be made in the pharmacy as TPNs are categorised as high-risk injectables (NPSA/2007/20). The National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors in the UK since August 2003. This study reports on types of error associated with the preparation of TPNs, including the stage at which these were identified and potential and actual patient outcomes. Methods: Reports of compounding errors for the period 1/2004 - 3/2007 were analysed on an Excel spreadsheet. Results: Of a total of 3691 compounding error reports, 674 (18%) related to TPN products; 548 adult vs. 126 paediatric. A significantly higher proportion of adult TPNs (28% vs. 13% paediatric) were associated with labelling errors and a significantly higher proportion of paediatric TPNs (25% vs. 15% adult) were associated with incorrect transcriptions (Chi-Square Test; p<0.005). Labelling errors were identified equally by pharmacists (42%) and technicians (48%) with technicians detecting mainly at first check and pharmacists at final check. Transcription errors were identified mainly by technicians (65% vs. 27% pharmacist) at first check. Incorrect drug selection (13%) and calculation errors (9%) were associated with adult and paediatric TPN preparations in the same ratio. One paediatric TPN error detected at first check was considered potentially catastrophic; 31 (5%) errors were considered of major and 38 (6%) of moderate potential consequence. Five errors (2 moderate, 1 minor) were identified during or after administration. Conclusions: While recent UK patient safety initiatives are aimed at improving the safety of injectable medicines in clinical areas, the current study highlights safety problems that exist within pharmacy production units. This could be used in the creation of an error management tool for TPN compounding processes within hospital pharmacies.
Resumo:
Background: Medication errors in general practice are an important source of potentially preventable morbidity and mortality. Building on previous descriptive, qualitative and pilot work, we sought to investigate the effectiveness, cost-effectiveness and likely generalisability of a complex pharm acist-led IT-based intervention aiming to improve prescribing safety in general practice. Objectives: We sought to: • Test the hypothesis that a pharmacist-led IT-based complex intervention using educational outreach and practical support is more effective than simple feedback in reducing the proportion of patients at risk from errors in prescribing and medicines management in general practice. • Conduct an economic evaluation of the cost per error avoided, from the perspective of the National Health Service (NHS). • Analyse data recorded by pharmacists, summarising the proportions of patients judged to be at clinical risk, the actions recommended by pharmacists, and actions completed in the practices. • Explore the views and experiences of healthcare professionals and NHS managers concerning the intervention; investigate potential explanations for the observed effects, and inform decisions on the future roll-out of the pharmacist-led intervention • Examine secular trends in the outcome measures of interest allowing for informal comparison between trial practices and practices that did not participate in the trial contributing to the QRESEARCH database. Methods Two-arm cluster randomised controlled trial of 72 English general practices with embedded economic analysis and longitudinal descriptive and qualitative analysis. Informal comparison of the trial findings with a national descriptive study investigating secular trends undertaken using data from practices contributing to the QRESEARCH database. The main outcomes of interest were prescribing errors and medication monitoring errors at six- and 12-months following the intervention. Results: Participants in the pharmacist intervention arm practices were significantly less likely to have been prescribed a non-selective NSAID without a proton pump inhibitor (PPI) if they had a history of peptic ulcer (OR 0.58, 95%CI 0.38, 0.89), to have been prescribed a beta-blocker if they had asthma (OR 0.73, 95% CI 0.58, 0.91) or (in those aged 75 years and older) to have been prescribed an ACE inhibitor or diuretic without a measurement of urea and electrolytes in the last 15 months (OR 0.51, 95% CI 0.34, 0.78). The economic analysis suggests that the PINCER pharmacist intervention has 95% probability of being cost effective if the decision-maker’s ceiling willingness to pay reaches £75 (6 months) or £85 (12 months) per error avoided. The intervention addressed an issue that was important to professionals and their teams and was delivered in a way that was acceptable to practices with minimum disruption of normal work processes. Comparison of the trial findings with changes seen in QRESEARCH practices indicated that any reductions achieved in the simple feedback arm were likely, in the main, to have been related to secular trends rather than the intervention. Conclusions Compared with simple feedback, the pharmacist-led intervention resulted in reductions in proportions of patients at risk of prescribing and monitoring errors for the primary outcome measures and the composite secondary outcome measures at six-months and (with the exception of the NSAID/peptic ulcer outcome measure) 12-months post-intervention. The intervention is acceptable to pharmacists and practices, and is likely to be seen as costeffective by decision makers.
Resumo:
Objective To determine the prevalence and nature of prescribing and monitoring errors in general practices in England. Design Retrospective case note review of unique medication items prescribed over a 12 month period to a 2% random sample of patients. Mixed effects logistic regression was used to analyse the data. Setting Fifteen general practices across three primary care trusts in England. Data sources Examination of 6048 unique prescription items prescribed over the previous 12 months for 1777 patients. Main outcome measures Prevalence of prescribing and monitoring errors, and severity of errors, using validated definitions. Results Prescribing and/or monitoring errors were detected in 4.9% (296/6048) of all prescription items (95% confidence interval 4.4 - 5.5%). The vast majority of errors were of mild to moderate severity, with 0.2% (11/6048) of items having a severe error. After adjusting for covariates, patient-related factors associated with an increased risk of prescribing and/or monitoring errors were: age less than 15 (Odds Ratio (OR) 1.87, 1.19 to 2.94, p=0.006) or greater than 64 years (OR 1.68, 1.04 to 2.73, p=0.035), and higher numbers of unique medication items prescribed (OR 1.16, 1.12 to 1.19, p<0.001). Conclusion Prescribing and monitoring errors are common in English general practice, although severe errors are unusual. Many factors increase the risk of error. Having identified the most common and important errors, and the factors associated with these, strategies to prevent future errors should be developed based on the study findings.