837 resultados para Errors and blunders, Literary
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XXII/2 along track lines of approximately 6800 NM total length during transits and the Ice Station POLarstern (ISPOL) experiment. Data were achieved during the transit from Cape Town via Bouvet Island towards Antarctic Peninsula for three weeks, crossing Agulhas Ridge, Agulhas Basin and Mid-Atlantic Ridge, and during the transit to Cape Town via South Georgia for two weeks. During the ISPOL station, data were gained while the vessel was drifting for five weeks anchored to an ice floe in the south-western Weddell Sea, starting at 68°13'S/54°47'W. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The refraction correction was achieved using CTD profiles or utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ARK-XXIII/3 along track lines of 7248 NM total length in the Arctic Ocean during transits and stationary work. Data were achieved on the transit from Iceland through the Northwestern Passage and the Beaufort Sea to the East Siberian Sea, crossing Northwind Ridge and Chukchi Plateau. The continental margin of East Siberian was surveyed by several wide spaced transects for almost three weeks. The Mendeleev Ridge and the surrounding deep sea bassins were investigated by a transect of about 1000 NM length, located at 80°-81°N. Lomonosov Ridge and Gakkel Ridge were also crossed. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle, 120° in shallow water areas. The refraction correction was achieved utilizing 14 CTD profiles measured during the cruise or by the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XV/2 along track lines of approximately 10200 NM total length during transits, surveys and partly during stationary work, mainly in the Scotia Sea and the Weddell Sea. Areal multibeam surveys were performed in the vicinity of the South Shetland trench, the Bransfield Basin, the South Sandwich trench, and off the Ekstrom Ice Shelf for time periods of three to eight days. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle, in some shallow areas 120°. The refraction correction was achieved utilizing sound velocity profiles sampled during the cruise, and by the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected without operator supervision on R/V Polarstern cruise ANT-XV/3 during 19 days along track lines of about 1100 NM total length. Data were achieved during transits and stationary work in the eastern Weddell Sea off the Riiser-Larsen Ice Shelf between Halley Bay and Atka Bay. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected without operator supervision on R/V Polarstern cruise ANT-XVI/2 along track lines of approximately 6800 NM. Data were achieved during transits and stationary work in the Atlantic Ocean, the South and the East Weddell Sea; amongst others between Atka Bay and Halley Bay, at the northern part of Filchner Trough, and off the Ronne Ice Shelf. A transect along the Greenwich meridian was taken between 66.5°S and 48°S during the transit from Neumayer to Cape Town. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected without operator supervision on R/V Polarstern cruise ANT-XVI/3 along track lines of approximately 6700 NM. Data were achieved during transits and stationary work in the Weddell Sea off the Ekstrom Ice Shelf and the Jelbart Ice Shelf and in the South Atlantic Ocean. An area of 140 x 140 km was surveyed with 15 km transect space at about 49.5°S and 20°E. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XXII/3 along track lines of approximately 8000 NM total length during transits and partly during stationary work. Data were achieved on a transect along the Greenwich meridian, across the Weddell Sea from Kapp Norvegia to Joinville Island, across the Powell Basin, furthermore in the Drake Passage and west of Antarctic Peninsula. Short bathymetric surveys were carried out on the continental slope off Kapp Norvegia and Fimbulisen, and in the area of the Weddell Abyssal Plain. The multibeam sonar system Hydrosweep DS-2 was operated mainly in the HDBE softbeam mode with 240 depth values per swath and a receiving coverage of 100°. The refraction correction was achieved utilizing CTD profiles or the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XIX/1 on track lines of about 5,200 NM total length in the Atlantic Ocean during the transit from Bremerhaven to Cape Town. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The refraction correction was achieved utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Objective: Older driver research has mostly focused on identifying that small proportion of older drivers who are unsafe. Little is known about how normal cognitive changes in aging affect driving in the wider population of adults who drive regularly. We evaluated the association of cognitive function and age, with driving errors. Method: A sample of 266 drivers aged 70 to 88 years were assessed on abilities that decline in normal aging (visual attention, processing speed, inhibition, reaction time, task switching) and the UFOV® which is a validated screening instrument for older drivers. Participants completed an on-road driving test. Generalized linear models were used to estimate the associations of cognitive factor with specific driving errors and number of errors in self-directed and instructor navigated conditions. Results: All errors types increased with chronological age. Reaction time was not associated with driving errors in multivariate analyses. A cognitive factor measuring Speeded Selective Attention and Switching was uniquely associated with the most errors types. The UFOV predicted blindspot errors and errors on dual carriageways. After adjusting for age, education and gender the cognitive factors explained 7% of variance in the total number of errors in the instructor navigated condition and 4% of variance in the self-navigated condition. Conclusion: We conclude that among older drivers errors increase with age and are associated with speeded selective attention particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, errors inhibiting responses and visual discrimination. These abilities should be the target of cognitive training.
Resumo:
We have previously reported a preliminary taxonomy of patient error. However, approaches to managing patients' contribution to error have received little attention in the literature. This paper aims to assess how patients and primary care professionals perceive the relative importance of different patient errors as a threat to patient safety. It also attempts to suggest what these groups believe may be done to reduce the errors, and how. It addresses these aims through original research that extends the nominal group analysis used to generate the error taxonomy. Interviews were conducted with 11 purposively selected groups of patients and primary care professionals in Auckland, New Zealand, during late 2007. The total number of participants was 83, including 64 patients. Each group ranked the importance of possible patient errors identified through the nominal group exercise. Approaches to managing the most important errors were then discussed. There was considerable variation among the groups in the importance rankings of the errors. Our general inductive analysis of participants' suggestions revealed the content of four inter-related actions to manage patient error: Grow relationships; Enable patients and professionals to recognise and manage patient error; be Responsive to their shared capacity for change; and Motivate them to act together for patient safety. Cultivation of this GERM of safe care was suggested to benefit from 'individualised community care'. In this approach, primary care professionals individualise, in community spaces, population health messages about patient safety events. This approach may help to reduce patient error and the tension between personal and population health-care.
Resumo:
Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis.
Resumo:
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
Resumo:
C.G. Jung and Literary Theory remedies a significant omission in literary studies by doing for Jung and poststructuralist literary theories what has been done extensively for Freud, Lacan and post-Freudian psychoanalysis. This work represents a complete departure from traditional Jungian literary criticism. Instead, radically new Jungian literary theories are developed of deconstruction, feminist theory, gender and psyche, the body and sexuality, spirituality, postcolonialism, historicism and reader-response. As well as linking Jung to the work of Derrida, Kristeva and Irigaray, the book traces contentious occult, cultural and political narratives in Jung's career. It contains a chapter on Jung and fascism in a literary context. [From the Publisher]
Resumo:
Past measurements of the radiocarbon interhemispheric offset have been restricted to relatively young samples because of a lack of older dendrochronologically secure Southern Hemisphere tree-ring chronologies. The Southern Hemisphere calibration data set SHCal04 earlier than AD 950 utilizes a variable interhemispheric offset derived from measured 2nd millennium AD Southern Hemisphere/Northern Hemisphere sample pairs with the assumption of stable Holocene ocean/ atmosphere interactions. This study extends the range of measured interhemispheric offset values with 20 decadal New Zealand kauri and Irish oak sample pairs from 3 selected time intervals in the 1st millennium AD and is part of a larger program to obtain high-precision Southern Hemisphere 14C data continuously back to 200 BC. We found an average interhemispheric offset of 35 ± 6 yr, which although consistent with previously published 2nd millennium AD measurements, is lower than the offset of 55–58 yr utilized in SHCal04. We concur with McCormac et al. (2008) that the IntCal04 measurement for AD 775 may indeed be slightly too old but also suggest the McCormac results appear excessively young for the interval AD 755–785. In addition, we raise the issue of laboratory bias and calibration errors, and encourage all laboratories to check their consistency with appropriate calibration curves and invest more effort into improving the accuracy of those curves.