990 resultados para Error Function
Resumo:
Objective: To compare the effects of a 4-month strength training (ST) versus aerobic endurance training (ET) program on metabolic control, muscle strength, and cardiovascular endurance in subjects with type 2 diabetes mellitus (T2D). Design: Randomized controlled trial. Setting: Large public tertiary hospital. Participants: Twenty-two T21) participants (I I men, I I women; mean age +/- standard error, 56.2 +/- 1.1 y; diabetes duration, 8.8 +/- 3.5y) were randomized into a 4-month ST program and 17 T2D participants (9 men, 8 women; mean age, 57.9 +/- 1.4y; diabetes duration, 9.2 +/- 1.7y) into a 4-month ET program. Interventions: ST (up to 6 sets per muscle group per week) and ET (with an intensity of maximal oxygen consumption of 60% and a volume beginning at 15min and advancing to a maximum of 30min 3X/wk) for 4 months. Main Outcome Measures: Laboratory tests included determinations of blood glucose, glycosylated hemoglobin (Hb A(1c)), insulin, and lipid assays. Results: A significant decline in Hb A, was only observed in the ST group (8.3% +/- 1.7% to 7.1% +/- 0.2%, P=.001). Blood glucose (204 +/- 16mg/dL to 147 +/- 8mg/dL, P <.001) and insulin resistance (9.11 +/- 1.51 to 7.15 +/- 1.15, P=.04) improved significantly in the ST group, whereas no significant changes were observed in the ET group. Baseline levels of total cholesterol (207 +/- 8mg/dL to 184 +/- 7mg/dL, P <.001), low-density lipoprotein cholesterol (120 +/- 8mg/dL to 106 +/- 8mg/dL, P=.001), and triglyceride levels (229 +/- 25mg/dL to 150 +/- 15mg/dL, P=.001) were significantly reduced and high-density lipoprotein cholesterol (43 +/- 3mg/dL to 48 +/- 2mg/dL, P=.004) was significantly increased in the ST group; in contrast, no such changes were seen in the ET group. Conclusions: ST was more effective than ET in improving glycemic control. With the added advantage of an improved lipid profile, we conclude that ST may play an important role in the treatment of T2D.
Resumo:
Very few empirically validated interventions for improving metacognitive skills (i.e., self-awareness and self-regulation) and functional outcomes have been reported. This single-case experimental study presents JM, a 36-year-old man with a very severe traumatic brain injury (TBI) who demonstrated long-term awareness deficits. Treatment at four years post-injury involved a metacognitive contextual intervention based on a conceptualization of neuro-cognitive, psychological, and socio-environmental factors contributing to his awareness deficits. The 16-week intervention targeted error awareness and self-correction in two real life settings: (a) cooking at home: and (b) volunteer work. Outcome measures included behavioral observation of error behavior and standardized awareness measures. Relative to baseline performance in the cooking setting, JM demonstrated a 44% reduction in error frequency and increased self-correction. Although no spontaneous generalization was evident in the volunteer work setting, specific training in this environment led to a 39% decrease in errors. JM later gained paid employment and received brief metacognitive training in his work environment. JM's global self-knowledge of deficits assessed by self-report was unchanged after the program. Overall, the study provides preliminary support for a metacognitive contextual approach to improve error awareness and functional Outcome in real life settings.
Resumo:
On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.
Resumo:
WWe present the case of two aphasic patients: one with fluent speech, MM, and one with dysfluent speech, DB. Both patients make similar proportions of phonological errors in speech production and the errors have similar characteristics. A closer analysis, however, shows a number of differences. DB's phonological errors involve, for the most part, simplifications of syllabic structure; they affect consonants more than vowels; and, among vowels, they show effects of sonority/complexity. This error pattern may reflect articulatory difficulties. MM's errors, instead, show little effect of syllable structure, affect vowels at least as much as consonants and, and affect all different vowels to a similar extent. This pattern is consistent with a more central impairment involving the selection of the right phoneme among competing alternatives. We propose that, at this level, vowel selection may be more difficult than consonant selection because vowels belong to a smaller set of repeatedly activated units.
Resumo:
PURPOSE. To investigate objectively and noninvasively the role of cognitive demand on autonomic control of systemic cardiovascular and ocular accommodative responses in emmetropes and myopes of late-onset. METHODS. Sixteen subjects (10 men, 6 women) aged between 18 and 34 years (mean ± SD: 22.6 ± 4.4 years), eight emmetropes (EMMs; mean spherical equivalent [MSE] refractive error ± SD: 0.05 ± 0.24 D) and eight with late-onset myopia (LOMs; MSE ± SD: -3.66 ± 2.31 D) participated in the study. Subjects viewed stationary numerical digits monocularly within a Badal optical system (at both 0.0 and -3.0 D) while performing a two-alternative, forced-choice paradigm that matched cognitive loading across subjects. Five individually matched cognitive levels of increasing difficulty were used in random order for each subject. Five 20-second, continuous-objective recordings of the accommodative response measured with an open-view infrared autorefractor were obtained for each cognitive level, whereas simultaneous measurement of heart rate was continuously recorded with a finger-mounted piezoelectric pulse transducer for 5 minutes. Fast Fourier transformation of cardiovascular function allowed the relative power of the autonomic components to be assessed in the frequency domain, whereas heart period gave an indication of the time-domain response. RESULTS. Increasing the cognitive demand led to a significant reduction in the accommodative response in all subjects (0.0 D: by -0.35 ± 0.33 D; -3.0 D: by -0.31 ± 0.40 D, P < 0.001). The greater lag of LOMs compared with EMMs was not significant (P = 0.07) at both distance (0.38 ± 0.35 D) and near (0.14 ± 0.42 D). Mean heart period reduced with increasing levels of workload (P < 0.0005). LOMs exhibited a relative elevation in sympathetic system activity compared to EMMs. Within refractive groups, however, accommodative shifts with increasing cognition correlated with parasympathetic activity (r = 0.99, P < 0.001), more than with sympathetic activity (r = 0.62, P > 0.05). CONCLUSIONS. In an equivalent workload paradigm, increasing cognitive demand caused a reduction in accommodative response that was attributable principally to a concurrent reduction in the relative power of the parasympathetic component of the autonomic nervous system (ANS). The disparity in accommodative response between EMMs and LOMs, however, appears to be augmented by changes in the sympathetic nervous component of the systemic ANS. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
This thesis first considers the calibration and signal processing requirements of a neuromagnetometer for the measurement of human visual function. Gradiometer calibration using straight wire grids is examined and optimal grid configurations determined, given realistic constructional tolerances. Simulations show that for gradiometer balance of 1:104 and wire spacing error of 0.25mm the achievable calibration accuracy of gain is 0.3%, of position is 0.3mm and of orientation is 0.6°. Practical results with a 19-channel 2nd-order gradiometer based system exceed this performance. The real-time application of adaptive reference noise cancellation filtering to running-average evoked response data is examined. In the steady state, the filter can be assumed to be driven by a non-stationary step input arising at epoch boundaries. Based on empirical measures of this driving step an optimal progression for the filter time constant is proposed which improves upon fixed time constant filter performance. The incorporation of the time-derivatives of the reference channels was found to improve the performance of the adaptive filtering algorithm by 15-20% for unaveraged data, falling to 5% with averaging. The thesis concludes with a neuromagnetic investigation of evoked cortical responses to chromatic and luminance grating stimuli. The global magnetic field power of evoked responses to the onset of sinusoidal gratings was shown to have distinct chromatic and luminance sensitive components. Analysis of the results, using a single equivalent current dipole model, shows that these components arise from activity within two distinct cortical locations. Co-registration of the resulting current source localisations with MRI shows a chromatically responsive area lying along the midline within the calcarine fissure, possibly extending onto the lingual and cuneal gyri. It is postulated that this area is the human homologue of the primate cortical area V4.
Resumo:
The study utilized the advanced technology provided by automated perimeters to investigate the hypothesis that patients with retinitis pigmentosa behave atypically over the dynamic range and to concurrently determine the influence of extraneous factors on the format of the normal perimetric sensitivity profile. The perimetric processing of some patients with retinitis pigmentosa was considered to be abnormal in either the temporal and/or the spatial domain. The standard size III stimulus saturated the central regions and was thus ineffective in detecting early depressions in sensitivity in these areas. When stimulus size was scaled in inverse proportion to the square root of ganglion cell receptive field density (M-scaled), isosensitive profiles did not result, although cortical representation was theoretically equivalent across the visual field. It was conjectured that this was due to variations in the ganglion cell characteristics with increasing peripheral angle, most notably spatial summation. It was concluded that the development of perimetric routines incorporating stimulus sizes adjusted in proportion to the coverage factor of retinal ganglion cells would enhance the diagnostic capacity of perimetry. Good general and local correspondence was found between perimetric sensitivity and the available retinal cell counts. Intraocular light scatter arising both from simulations and media opacities depressed perimetric sensitivity. Attenuation was greater centrally for the smaller LED stimuli, whereas the reverse was true for the larger projected stimuli. Prior perimetric experience and pupil size also demonstrated eccentricity-dependent effect on sensitivity. Practice improved perimetric sensitivity for projected stimuli at eccentricities greater than or equal to 30o; particularly in the superior region. Increase in pupil size for LED stimuli enhanced sensitivity at eccentricities greater than 10o. Conversely, microfluctuation in the accommodative response during perimetric examination and the correction of peripheral refractive error had no significant influence on perimetric sensitivity.
Resumo:
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.
Resumo:
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.
Resumo:
We have demonstrated the feasibility of error-free DWDM 8×40 Gb/s transmission over an 800 km SMF/DCF link with 0.8 bit/s/Hz spectral efficiency without polarization multiplexing.
Resumo:
In this letter, we experimentally study the statistical properties of a received QPSK modulated signal and compare various bit error rate (BER) estimation methods for coherent optical orthogonal frequency division multiplexing transmission. We show that the statistical BER estimation method based on the probability density function of the received QPSK symbols offers the most accurate estimate of the system performance.
Resumo:
We develop a theoretical method to calculate jitter statistics of interacting solitons. Applying this approach, we have derived the non-Gaussian probability density function and calculated the bit-error rate as a function of noise level, initial separation and phase difference between solitons.
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) is an attractive transmission technique to virtually eliminate intersymbol interference caused by chromatic dispersion and polarization-mode dispersion. Design, development, and operation of CO-OFDM systems require simple, efficient, and reliable methods of their performance evaluation. In this paper, we demonstrate an accurate bit error rate estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. By comparing with other known approaches, including data-aided and nondata-aided error vector magnitude, we show that the proposed method offers the most accurate estimate of the system performance for both single channel and wavelength division multiplexing QPSK CO-OFDM transmission systems. © 2014 IEEE.