942 resultados para Equations of motion.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-contained discussion of integral equations of scattering is presented in the case of centrally symmetric potentials in one dimension, which will facilitate the understanding of more complex scattering integral equations in two and three dimensions. The present discussion illustrates in a simple fashion the concept of partial-wave decomposition, Green's function, Lippmann-Schwinger integral equations of scattering for wave function and transition operator, optical theorem, and unitarity relation. We illustrate the present approach with a Dirac delta potential. (C) 2001 American Association of Physics Teachers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deformation parameter of a bihamiltonian structure of hydrodynamic type is shown to parametrize different extensions of the AKNS hierarchy to include negative flows. This construction establishes a purely algebraic link between, on the one hand, two realizations of the first negative flow of the AKNS model and, on the other, two-component generalizations of Camassa-Holmand Dym-type equations. The two-component generalizations of Camassa-Holm- and Dym-type equations can be obtained from the negative-order Hamiltonians constructed from the Lenard relations recursively applied on the Casimir of the first Poisson bracket of hydrodynamic type. The positive-order Hamiltonians, which follow froth the Lenard scheme applied on the Casimir of the second Poisson bracket of hydrodynamic type, are shown to coincide with the Hamiltonians of the AKNS model. The AKNS Hamiltonians give rise to charges conserved with respect to equations of motion of two-component Camassa-Holm- and two-component Dym-type equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end Point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter nu(2). We discuss also the effcts of the initial-condition fluctuations and the continuous emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equations of state for the early universe including realistic interactions between constituents are formulated. Under certain hypotheses, these equations are able to generate an inflationary regime prior to the period of the nucleosynthesis. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of a curvature parameter. equal to 0 or + 1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion. All the results are valid only for a matter-antimatter symmetric universe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the dynamics of a Duffing oscillator driven by a limited power supply, such that the source of forcing is considered to be another oscillator, coupled to the first one. The resulting dynamics come from the interaction between both systems. Moreover, the Duffing oscillator is subjected to collisions with a rigid wall (amplitude constraint). Newtonian laws of impact are combined with the equations of motion of the two coupled oscillators. Their solutions in phase space display periodic (and chaotic) attractors, whose amplitudes, especially when they are too large, can be controlled by choosing the wall position in suitable ways. Moreover, their basins of attraction are significantly modified, with effects on the final state system sensitivity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer experiments of interstellar cloud collisions were performed with a new smoothed-particle-hydrodynamics (SPH) code. The SPH quantities were calculated by using spatially adaptive smoothing lengths and the SPH fluid equations of motion were solved by means of a hierarchical multiple time-scale leapfrog. Such a combination of methods allows the code to deal with a large range of hydrodynamic quantities. A careful treatment of gas cooling by H, H(2), CO and H II, as well as a heating mechanism by cosmic rays and by H(2) production on grains surface, were also included in the code. The gas model reproduces approximately the typical environment of dark molecular clouds. The experiments were performed by impinging two dynamically identical spherical clouds onto each other with a relative velocity of 10 km s(-1) but with a different impact parameter for each case. Each object has an initial density profile obeying an r(-1)-law with a cutoff radius of 10 pc and with an initial temperature of 20 K. As a main result, cloud-cloud collision triggers fragmentation but in expense of a large amount of energy dissipated, which occurred in the head-on case only. Off-center collision did not allow remnants to fragment along the considered time (similar to 6 Myr). However, it dissipated a considerable amount of orbital energy. Structures as small as 0.1 pc, with densities of similar to 10(4) cm(-3), were observed in the more energetic collision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we examine the nonlinear control method based on the saturation phenomenon and of systems coupled with quadratic nonlinear ties applied to a shear-building portal plane frame foundation that supports an unbalanced direct cut-rent with limited power supply (non-ideal system). We analyze the equations of motion by using the method of averaging and numerical simulation. The interaction of the non-ideal structure with the saturation controller may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. Special attention is focused on passage through resonance when the non-ideal excitation frequency is near the portal frame natural frequency and when the non-ideal system frequency is approximately twice the controller frequency (two-to-one internal resonance).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct infinite sets of local conserved charges for the conformal affine Toda model. The technique involves the abelianization of the two-dimensional gauge potentials satisfying the zero-curvature form of the equations of motion. We find two infinite sets of chiral charges and apart from two lowest spin charges, all the remaining ones do not possess chiral densities. Charges of different chiralities Poisson commute among themselves. We discuss the algebraic properties of these charges and use the fundamental Poisson bracket relation to show that the charges conserved in time are in involution. Connections to other Toda models are established by taking particular limits.