120 resultados para Eptesicus-fuscus
Resumo:
During Ocean Drilling Program (ODP) Leg 149, five sites were drilled on the Iberia Abyssal Plain in the northeastern Atlantic Ocean. Both Mesozoic and Cenozoic sediments were recovered. Oligocene to Miocene sediments were cored at deepwater Sites 897, 898, 899, and 900. Except for a few intervals, occurrences of generally abundant and well-preserved calcareous nannofossils suggest that the deposition of the turbidite-type sediments occurred above the calcite compensation depth (CCD). One major unconformity in the middle late Miocene is present. Detailed quantitative analyses of calcareous nannofossils are used to determine the changes occurring among the nannoflora in relation to sea-level variation. A succession of 89 biohorizons from the early Oligocene to the late Miocene are defined by combining the biostratigraphic results of the four sites studied in the Iberia Abyssal Plain. One new genus and eight new species are described: Camuralithus, Camuralithus pelliculatus, Ericsonia detecta, Helicosphaera limasera, Sphenolithus akropodus, Sphenolithus aubryae, Sphenolithus cometa, Reticulofenestra circus, and Syracosphaera lamina. Two new variations and seven new combinations are also introduced.
Resumo:
These data sets report the fossil beetle assemblages identified from the Mesolithic to Late Bronze Age at eight sites in the London region. All but one of the study sites are within 2 km of the modern course of the Thames. The sites produced 128 faunal assemblages that yielded 218 identified species in 41 families of Coleoptera (beetles). Beetle faunas of Mesolithic age indicate extensive wetlands near the Thames, bordered by rich deciduous woodlands. The proportion of woodland species declined in the Neolithic, apparently because of the expansion of wetlands, rather than because of human activities. The Early Bronze Age faunas contained a greater proportion of coniferous woodland and aquatic (standing water) species. An increase in the dung beetle fauna indicates the presence of sheep, cattle and horses, and various beetles associated with crop lands demonstrate the local rise of agriculture, albeit several centuries after the beginnings of farming in other regions of Britain. Late Bronze Age faunas show the continued development of agriculture and animal husbandry along the lower Thames. About 33% of the total identified beetle fauna from the London area sites have limited modern distributions or are extinct in the U.K. Some of these species are associated with the dead wood found in primeval forests; others are wetland species whose habitat has been severely reduced in recent centuries. The third group is stream-dwelling beetles that require clean, clear waters and river bottoms.
Resumo:
During Ocean Drilling Program (ODP) Leg 189, five sites were drilled in the Tasmanian Seaway with the objective to constrain the paleoceanographic implications of the separation of Australia from Antarctica and to elucidate the paleoceanographic developments throughout the Neogene (Shipboard Scientific Party, 2001a, doi:10.2973/odp.proc.ir.189.101.2001). Sediments ranged from Cretaceous to Quaternary in age and provided the opportunity to describe the paleoenvironments in the Tasman Seaway prior to, during, and after the separation of Australia and Antarctica. This study will focus on postseparation distribution of calcareous nannofossils through the Miocene. Miocene sediments were recovered at all five Leg 189 sites, and four of these sites were studied in detail to determine the calcareous nannofossil biostratigraphy. Hole 1168A, located on the western Tasmanian margin, contains a fairly continuous Miocene record and could be easily zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. Analysis of sediments from Hole 1169A, located on the western South Tasman Rise, was not included in this study, as the recovered sediments were highly disturbed and unsuitable for further analysis (Shipboard Scientific Party, 2001c, doi:10.2973/odp.proc.ir.189.104.2001). Holes 1170A, 1171A, and 1171C are located on the South Tasman Rise south of the modern Subtropical Front (STF). They revealed incomplete Miocene sequences intersected by an early Miocene and late Miocene hiatus and could only be roughly zoned using the Okada and Bukry zonation. Similarly, Hole 1172A, located on the East Tasman Plateau, contains a Miocene sequence with a hiatus in the early Miocene and in the late Miocene and could only be roughly zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. This study aims to improve calcareous nannofossil biostratigraphic resolution in this sector of the mid to high southern latitudes. This paper will present abundance, preservation, and stratigraphic distribution of calcareous nannofossils through the Miocene and focus mainly on biozonal assignment.
Resumo:
Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 µatm by year 2100, with extremes above 2000 µatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 µatm) on resting (M O2rest) and maximum (M O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and Pomacentrus amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28-39% increase in M O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining M O2rest. By contrast, the same treatment had no significant effects on M O2rest or M O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 µatm CO2 resulted in M O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the M O2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2.
Resumo:
Über die Verbreitung, Gliederung und Ausbildung des Jungtertiärs im westlichen Schleswig-Holstein war bisher nicht viel bekannt. Am besten bearbeitet sind die glazial gestauchten Schollen von Morsum/Sylt. Eine Aufzählung erbohrter Miozänvorkommen mit nicht immer überzeugender Begründung lieferte H.-L. HECK 1935. S. THIELE (1941) hat die ihm bekannten Vorkommen hauptsächlich nach faziellen und petrographischen Gesichtspunkten bearbeitet. Er erkannte richtig die Stellung der Braunkohlensande. Die angekündigte palaeontologische Bearbeitung ist nicht erschienen. Eine allgemeine Übersicht über die Entwicklung des Jungtertiärs bringen W. WOLFE und H.-L. HECK 1949. W. HINSCH lieferte wertvolle Beiträge zur Molluskenfauna und zur Gliederung des Miozäns (1952, 1955). Über neue Vorkommen von Braunkohlen-Sanden berichtete E. DITTMER(1 956), eine erste Übersicht über neue Vorkommen der Hemmoorer Stufe gab derselbe Verfasser 1957.