957 resultados para Enzyme replacement therapy
Evaluating how guidelines for replacement therapy were implemented following withdrawal of rofecoxib
Resumo:
Enzyme replacement therapy (ERT) with recombinant human (rh) acid α-glucosidase (GAA) has prolonged the survival of patients. However, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up rhGAA, correlated with a poor response to ERT by muscle in Pompe disease. Clenbuterol, a selective β2 receptor agonist, enhanced the CI-MPR expression in striated muscle through Igf-1 mediated muscle hypertrophy, which correlated with increased CI-MPR (also the Igf-2 receptor) expression. In this study we have evaluated 4 new drugs in GAA knockout (KO) mice in combination with an adeno-associated virus (AAV) vector encoding human GAA, 3 alternative β2 agonists and dehydroepiandrosterone (DHEA). Mice were injected with AAV2/9-CBhGAA (1E+11 vector particles) at a dose that was not effective at clearing glycogen storage from the heart. Heart GAA activity was significantly increased by either salmeterol (p<0.01) or DHEA (p<0.05), in comparison with untreated mice. Furthermore, glycogen content was reduced in the heart by treatment with DHEA (p<0.001), salmeterol (p<0.05), formoterol (p<0.01), or clenbuterol (p<0.01) in combination with the AAV vector, in comparison with untreated GAA-KO mice. Wirehang testing revealed that salmeterol and the AAV vector significantly increased performance, in comparison with the AAV vector alone (p<0.001). Similarly, salmeterol with the vector increased performance significantly more than any of the other drugs. The most effective individual drugs had no significant effect in absence of vector, in comparison with untreated mice. Thus, salmeterol should be further developed as adjunctive therapy in combination with either ERT or gene therapy for Pompe disease.
Resumo:
Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children`s growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling. The trials were registered at www.clinicaltrials.gov as #NCT00598481 and #NCT00599781. (Blood. 2009; 114: 3216-3226)
Resumo:
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher`s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Resumo:
Background: Children with Gaucher disease type I (GD1) are usually treated with enzyme replacement therapy (ERT) at a dose of 30-60U/Kg/2W. Recently, due to an acute shortage supply of imiglucerase, a reduced dose or a reduced infusion frequency was recommended. Objective: To evaluate the effects of a reduced infusion frequency of imiglucerase over 15 months of follow-up. Patients and Methods: Three patients (1M:2F) were treated with ERT since a median age of 7 years (range 5-12). Only one had bone crisis and Erlenmeyer deformations. Median duration of treatment before dose reduction was 3 years (range 1-8). ERT resulted in total regression of symptoms, normalization of hematological parameters and progressive improvement of chitotriosidase in all patients. In August 2009 infusion schedule was changed from a media 45U/Kg every two weeks to every four weeks. Results: All patients remained asymptomatic and with no major change on hematological parameters except for the patient with bone crisis who presented subnormal platelet count. All patients showed an upward trend in chitotriosidase values. Comments: Although a longer follow-up is needed, is probable that even children completely stabilized can probably not be kept on lower doses even though the reduction of frequency of the infusions represent a lower social burden.
Resumo:
Fabry disease is caused by a deficiency of a-galactosidase A which leads to the progressive intra-lysosomal accumulation of ceramide trihexoside (CTH), also known as globotriaosylceramide (Gb3), in different cell types and body fluids. The clinical manifestations are multisystemic and predominantly affect the heart, kidney and central nervous system. The role of CTH in the pathophysiological process of Fabry disease is not established, and the link between the degree of accumulation and disease manifestations is not systematic. The use of CTH as a diagnostic tool has been proposed for several decades. The recent introduction of a specific treatment for Fabry disease in the form of enzyme replacement therapy (ERT) has led to the need for a biological marker, in place of a clinical sign, for evaluating the efficacy of treatment and also as a tool for following the long term effects of treatment. The ideal biomarker must adhere to strict criteria, and there should be a correlation between the degree of clinical efficacy of treatment and a change in its concentration. This review of the literature assesses the utility of CTH as a diagnostic tool and as a marker of the efficacy of ERT in patients with Fabry disease. Several techniques have been developed for measuring CTH; the principles and the sensitivity thresholds of these methods and the units used to express the results should be taken into consideration when interpreting data. The use of CTH measurement in Fabry disease should be re-evaluated in light of recent published data.
Resumo:
Introduction and Aims: Fabry disease is an X-linked lysosomal storage disorder caused by absence or deficient activity of the lysosomal enzyme alpha-galactosidase A. Renal manifestations occur early in life in a significant proportion of children, in many women and in almost all men with Fabry disease. These manifestations ultimately progress to end-stage renal disease in nearly all males and in some female patients. Data on kidney transplantation in patients with Fabry disease who are receiving enzyme replacement therapy (ERT), however, are scarce. Methods: We examined the clinical characteristics of kidney transplant recipients (KTRs) in the Fabry Outcome Survey (FOS) - a European database of patients with Fabry disease that was established to monitor the safety and outcome of ERT. Results: Of the 752 patients enrolled in FOS up to October 2005, 34 (4.5%) were reported to be KTRs. The mean age of these 32 male and 2 female patients was 45 ± 9 years, the median time since the transplant was 9 years, the median estimated glomerular filtration rate (eGFR) was 46 mL/min/1.73 m2 and the median level of proteinuria was 180 mg/24 hours. ERT was well tolerated, with mild infusion-related reactions reported in only one patient. Amongst these patients, 53% were reported to have hypertension, 71% left ventricular hypertrophy, 27% cardiac valve disease and 27% arrhythmia. A total of 23 (68%) of the patients (1 female, 22 males) were receiving ERT with agalsidase alfa (Replagal; Shire Human Genetic Therapies, UK), with a median duration of treatment of 2.5 years. There were no differences in age or time since transplantation between treated and untreated patients. The median eGFRs were 46 and 49 mL/min/1.73 m2 and the median levels of proteinuria were 200 and 160 mg/24 hours, respectively. Conclusions: KTRs represent a significant minority of individuals enrolled in a large international registry of patients with Fabry disease (FOS). Approximately two-thirds of KTRs with Fabry disease enrolled in FOS receive ERT with agalsidase alfa, which is well tolerated. Comparison of treated and untreated patients has the potential to examine effects of ERT on the progression of renal and cardiovascular disease.
Resumo:
Pulmonary involvement in Fabry disease has received less attention than the effects of the disease on the kidneys, nervous system or heart. However, data from FOS -the Fabry Outcome Survey - are now helping to elucidate the pulmonary manifestations of Fabry disease. Twenty-three patients out of a cohort of 67 analysed in FOS have been identified with airway obstruction, as defined by a ratio of forced expiratory volume in 1 second to forced vital capacity of less than 0.7. This prevalence is much greater than would be expected in the general population, with the main risk factors appearing to be increasing age and male gender. Spirometric analysis has revealed that the airway obstruction is clinically much more similar to chronic obstructive pulmonary disease than to asthma. Although little is known about the anatomical changes responsible for airway obstruction in patients with Fabry disease, airway wall hyperplasia and/or fibrosis are potential causes. Treatment of patients with moderate or severe airway obstruction should include inhaled bronchodilators, and individuals who smoke should be encouraged to stop. Further studies and future analyses of FOS data should determine whether enzyme replacement therapy is able to help or prevent the pulmonary manifestations of Fabry disease.