948 resultados para Environmental monitoring - Australia
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
The need for large scale environmental monitoring to manage environmental change is well established. Ecologists have long used acoustics as a means of monitoring the environment in their field work, and so the value of an acoustic environmental observatory is evident. However, the volume of data generated by such an observatory would quickly overwhelm even the most fervent scientist using traditional methods. In this paper we present our steps towards realising a complete acoustic environmental observatory - i.e. a cohesive set of hardware sensors, management utilities, and analytical tools required for large scale environmental monitoring. Concrete examples of these elements, which are in active use by ecological scientists, are also presented
Resumo:
Human-specific Bacteroides HF183 (HS-HF183), human-specific Enterococci faecium esp (HS-esp), human-specific adenoviruses (HS-AVs) and human-specific polyomaviruses (HS-PVs) assays were evaluated in freshwater, seawater and distilled water to detect fresh sewage. The sewage spiked water samples were also tested for the concentrations of traditional fecal indicators (i.e., Escherichia coli, enterococci and Clostridium perfringens) and enteric viruses such as enteroviruses (EVs), sapoviruses (SVs), and torquetenoviruses (TVs). The overall host-specificity of the HS-HF183 marker to differentiate between humans and other animals was 98%. However, the HS-esp, HS-AVs and HS-PVs showed 100% hostspecificity. All the human-specific markers showed >97% sensitivity to detect human fecal pollution. E. coli, enterococci and, C. perfringens were detected up to dilutions of sewage 10_5, 10_4 and 10_3 respectively.HS-esp, HS-AVs, HS-PVs, SVs and TVs were detected up to dilution of sewage 10_4 whilst EVs were detected up to dilution 10_5. The ability of the HS-HF183 marker to detect freshsewagewas3–4 orders ofmagnitude higher than that of the HS-esp and viral markers. The ability to detect fresh sewage in freshwater, seawater and distilled water matrices was similar for human-specific bacterial and viral marker. Based on our data, it appears that human-specific molecular markers are sensitive measures of fresh sewage pollution, and the HS-HF183 marker appears to be the most sensitive among these markers in terms of detecting fresh sewage. However, the presence of the HS-HF183 marker in environmental waters may not necessarily indicate the presence of enteric viruses due to their high abundance in sewage compared to enteric viruses. More research is required on the persistency of these markers in environmental water samples in relation to traditional fecal indicators and enteric pathogens.
Resumo:
The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.
Resumo:
The host specificity of the five published sewage-associated Bacteroides markers (i.e., HF183, BacHum, HuBac, BacH and Human-Bac) was evaluated in Southeast Queensland, Australia by testing fecal DNA samples (n = 186) from 11 animal species including human fecal samples collected via influent to a sewage treatment plant (STP). All human fecal samples (n = 50) were positive for all five markers indicating 100% sensitivity of these markers. The overall specificity of the HF183 markers to differentiate between humans and animals was 99%. The specificities of the BacHum and BacH markers were > 94%, suggesting that these markers are suitable for sewage pollution in environmental waters in Australia. The BacHum (i.e., 63% specificity) and Human-Bac (i.e., 79% specificity) markers performed poorly in distinguishing between the sources of human and animal fecal samples. It is recommended that the specificity of the sewage-associated markers must be rigorously tested prior to its application to identify the sources of fecal pollution in environmental waters.
Resumo:
Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults ; higher concentrations in children ; similar concentrations in maternal and cord blood ; and no gender differences . After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.
Resumo:
The bactericide triclosan has found wide-spread use in e.g. soaps, deodorants and toothpastes. Recent in vitro and in vivo studies indicate that triclosan might exert adverse effects in humans. Triclosan has previously been shown to be present in human plasma and milk at concentrations that are well correlated to the use of personal care products containing triclosan. In this study we investigated the influence of age, gender, and the region of residence on triclosan concentrations in pooled samples of Australian human blood serum. The results showed no influence of region of residence on the concentrations of triclosan. There was a small but significant influence of age and gender on the serum triclosan concentrations, which were higher in males than in females, and highest in the group of 31–45 year old males and females. However, overall there was a lack of pronounced differences in the triclosan concentrations within the dataset, which suggests that the exposure to triclosan among different groups of the Australian population is relatively homogenous. A selection of the dataset was compared with previous measurements of triclosan concentrations in human plasma from Sweden, where the use of triclosan is expected to be low due to consumer advisories. The triclosan concentrations were a factor of 2 higher in Australian serum than in Swedish plasma.
Resumo:
Pooled serum samples collected from 8132 residents in 2002/03 and 2004/05 were analyzed to assess human polybrominated diphenyl ether (PBDE) concentrations from specified strata of the Australian population. The strata were defined by age (0−4 years, 5−15 years, < 16 years, 16−30 years, 31−45 years, 46−60 years, and >60 years); region; and gender. For both time periods, infants and older children had substantially higher PBDE concentrations than adults. For samples collected in 2004/05, the mean ± standard deviation ΣPBDE (sum of the homologue groups for the mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, and deca-BDEs) concentrations for 0−4 and 5−15 years were 73 ± 7 and 29 ± 7 ng g−1 lipid, respectively, while for all adults >16 years, the mean concentration was lower at 18 ± 5 ng g−1 lipid. A similar trend was observed for the samples collected in 2002/03, with the mean ΣPBDE concentration for children <16 years being 28 ± 8 ng g−1 lipid and for the adults >16 years, 15 ± 5 ng g−1 lipid. No regional or gender specific differences were observed. Measured data were compared with a model that we developed to incorporate the primary known exposure pathways (food, air, dust, breast milk) and clearance (half-life) data. The model was used to predict PBDE concentration trends and indicated that the elevated concentrations in infants were primarily due to maternal transfer and breast milk consumption with inhalation and ingestion of dust making a comparatively lower contribution.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.