987 resultados para Environmental contaminated matrices


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a major review work on ground water remediation since the earlier work of Mulligan et al published in 2001 in Engineering Geology Journal. This work resulted from the joint research project of QUB and University of Malaya on iron removal from groundwater for public water supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is the first investigation of biodegradation of carbon disulphide (CS2) in soil that provides estimates of degradation rates and identifies intermediate degradation products and carbon isotope signatures of degradation. Microcosm studies were undertaken under anaerobic conditions using soil and groundwater recovered from CS2-contaminated sites. Proposed degradation mechanisms were validated using equilibrium speciation modelling of concentrations and carbon isotope ratios. A first-order degradation rate constant of 1.25 × 10-2 h-1 was obtained for biological degradation with soil. Carbonyl sulphide (COS) and hydrogen sulphide (H2S) were found to be intermediates of degradation, but did not accumulate in vials. A 13C/12C enrichment factor of -7.5 ± 0.8 ‰ was obtained for degradation within microcosms with both soil and groundwater whereas a 13C/12C enrichment factor of -23.0 ± 2.1 ‰ was obtained for degradation with site groundwater alone. It can be concluded that biological degradation of both CS2-contaminated soil and groundwater is likely to occur in the field suggesting that natural attenuation may be an appropriate remedial tool at some sites. The presence of biodegradation by-products including COS and H2S indicates that biodegradation of CS2 is occurring and stable carbon isotopes are a promising tool to quantify CS2 degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Greylag geese (Anser anser) in the Guadalquivir Marshes (southwestern Spain) can be exposed to sources of inorganic pollution such as heavy metals and arsenic from mining activities or Pb shot used for hunting. We have sampled 270 fecal excreta in different areas of the marshes in 2001 to 2002 to evaluate the exposure to Pb, Zn, Cu, Mn, and As and to determine its relationship with soil ingestion and with the excretion of porphyrins and biliverdin as biomarkers. These effects and the histopathology of liver, kidney, and pancreas were also studied in 50 geese shot in 2002 to 2004. None of the geese had ingested Pb shot in the gizzard. This contrasts with earlier samplings before the ban of Pb shot for waterfowl hunting in 2001 and the removal of Pb shot in points of the Doñana National Park (Spain) in 1999 to 2000. The highest exposure through direct soil ingestion to Pb and other studied elements was observed in samples from Entremuros, the area of the Doñana Natural Park affected by the Aznalcóllar mine spill in 1998. Birds from Entremuros also more frequently showed mononuclear infiltrates in liver and kidney than birds from the unaffected areas, although other more specific lesions of Pb or Zn poisoning were not observed. The excretion of coproporphyrins, especially of the isomer I, was positively related to the fecal As concentration, and the ratio of coproporphyrin III/I was positively related to fecal Pb concentration. Biliary protoporphyrin IX concentration was also slightly related to hepatic Pb concentration. This study reflects biological effects on terrestrial animals by the mining pollution in Doñana that can be monitored with the simple noninvasive sampling of feces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two arsenic and heavy metal-contaminated mine spoil sites, at Carrock Fell, Cumbria, United Kingdom, and Devon Great Consols Mine, Devon, United Kingdom, have been found to support populations of the earthworms Lumbricus rubellus Hoffmeister and Dendrodrilus rubidus (Savigny). Lumbricus rubellus and D. rubidus collected from the Devon site and an uncontaminated site were kept for 28 d in uncontaminated soil and in soil containing 750 mg/kg CuCl2, the state of the specimens being recorded using a semiquantitative assessment of earthworm health (condition index). The condition index remained high for all specimens except those of L. rubellus and D. rubidus from uncontaminated sites, which displayed 100% mortality. Bioavailability of Cu in the soils from one uncontaminated and two contaminated sites and in the uncontaminated soil treated with CuCl2 was determined using sequential extraction. Soils from Devon Great Consols had the greatest availability of Cu, Carrock Fell the lowest. Total tissue Cu for L. rubellus and D. rubidus from the contaminated sites did not change significantly for each species during the experiment. Total tissue concentrations of Cu for L. rubellus and D. rubidus from uncontaminated sites increased significantly during the first 7 d, after which mortality was 90%, making it impossible to continue the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg-1, with mean As concentration 64.44 mg kg-1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27-385.98 mg kg-1 dry weight), while the lowest was in unpolished rice (0.31-0.52 mg kg-1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root » soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg-1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg−1) and mineralisation (199.8 mg kg−1) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg−1) and granite (36.0 mg kg−1) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several agricultural fields show high contents of arsenic because of irrigation with arsenic- contaminated groundwater. Vegetables accumulate arse- nic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic en- demic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L−1) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumula- tion were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spec- trometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, suchas ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to im- prove food safety and also food security by increasing farmer’s revenue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluxes of HCH isomers α- and γ-HCH dynamics were determined in four industrial U.K. rivers feeding the North Sea. Sampling was conducted weekly basis over a 2-year period. This was complemented by discrete studies of events where two hourly sampling periods were used to investigate the fine time scale dynamics of fluxes. Two intensively industrialized rivers had average isomer concentrations of ~20 ng L-1 for both isomers, while average concentrations in the two less industrialized rivers ranged between 1.5 and 5.0 ng L-1. α-HCH concentrations showed no strong temporal patterns on any river, which contrasts with γ-HCH levels that increased considerably during late summer/early autumn following sustained periods of low river flow. Sampling during high river flow events on rivers with differing HCH pollution histories both showed the same dynamics in HCH isomer concentrations. γ-HCH concentrations decreased 4-fold during events while α-HCH-concentrations stayed constant. The increases in γ-HCH concentrations under low flow conditions and the rapid dilution of this isomer during events indicate that γ-HCH has current inputs to these river systems. It was calculated that these four rivers export 30.8 kg yr-1 of γ-HCH and 14.8 kg yr-1 of α-HCH to the North Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 ppb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.