991 resultados para Environmental Chemicals
Resumo:
In zebrafish, two isoforms of the aromatase gene exist, namely cyp19a1 and cyp19a2, expressed predominantly in the gonads and brain, respectively. In this study, we focus on characterizing the specificity of antibodies against the aromatase isoforms, and on (xeno)estrogen-induced changes of individual cyp19a2 mRNA concentrations in the brains of adult male zebrafish. Among three polyclonal antibodies studied, the one against CYP19A2 was found to be specific in Western blots and immunohistochemistry. Real-time RT-PCR analyses revealed strong interindividual variation of cyp19a2 levels in the brains of adult male zebrafish. After a three-week-exposure to (xeno)estrogens, mean values of cyp19a2 mRNA levels tended to increase, with significant induction at 200 ng 17beta-estradiol/L, but interindividual variation of cyp19a2 expression was maintained.
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
Resumo:
The purpose of this study is to detail and analyze the distribution, concentration, and loads of 5 organic compounds along Silver Bow Creek in Butte, Montana from the Municipal Wastewater treatment plant to the Warm Springs Ponds. The chemicals analyzed include Carbamazepine (pharmaceutical), Miconazole (fungicide) and three antibiotics – Sulfamethoxazole, Thiabendazole, and Ciprofloxacin. This project begins a 2 year study to analyze 6 additional compounds (11 compounds total), to develop an effective method to detail and analyze OWCs using Mass Spectrometer/Liquid chromatography system, and to aid in assessment of aquatic health and ongoing restoration work. The EPA method 1694 was used for analysis
Resumo:
Against the background of a widely fragmented and diluted international environmental governance architecture, different reform options are currently being discussed. This issue brief considers whether streamlining international environmental regimes by grouping or ‘clustering’ international agreements could improve effectiveness and efficiency. It outlines the general idea of the clustering approach, draws lessons from the chemicals and waste cluster and examines the implications and potentials of clustering multilateral environmental agreements.
Resumo:
The objective of this dissertation was to design and implement strategies for assessment of exposures to organic chemicals used in the production of a styrene-butadiene polymer at the Texas Plastics Company (TPC). Linear statistical retrospective exposure models, univariate and multivariate, were developed based on the validation of historical industrial hygiene monitoring data collected by industrial hygienists at TPC, and additional current industrial hygiene monitoring data collected for the purposes of this study. The current monitoring data served several purposes. First, it provided information on current exposure data, in the form of unbiased estimates of mean exposure to organic chemicals for each job title included. Second, it provided information on homogeneity of exposure within each job title, through the use of a carefully designed sampling scheme which addressed variability of exposure both between and within job titles. Third, it permitted the investigation of how well current exposure data can serve as an evaluation tool for retrospective exposure estimation. Finally, this dissertation investigated the simultaneous evaluation of exposure to several chemicals, as well as the use of values below detection limits in a multivariate linear statistical model of exposures. ^
Resumo:
In the field of health risk analysis, cumulative risk assessment (CRA) is a necessary, although undeniably more complex approach to understanding the mixture of stressors, whether chemical or psychosocial, that exist in our environment, in all the pathways through which the chemicals may evolve—air, soil, or water, as well as the accumulation of these exposures over time. Related, or attached to the developing awareness of scientists understanding this mix of combined health effects is the burgeoning of the environmental justice movement, in which educated community advocates and even affected community members have called attention to evidence of a higher pollution burden in minority and/or lower SES communities. The intention of this paper is to 1) examine the development and understanding of CRA, primarily by the U.S. Environmental Protection Agency; 2) to assess several states agencies and some EPA regional offices' interpretation of CRA, again based primarily on EPA guidance, and 3) to analyze how CRA might be refined in its implementation—giving some cues as to how the EPA may more effectively interact with communities interested in CRA.^
Resumo:
This paper shows some findings how product related environmental regulations, especially those that relate to management of chemical substances affect firms in Asia. Interviews were conducted for some firms in Vietnam that are part of global supply chains of electrical and electronic, furniture, and plastic industries. The global supply chains with MNC lead firms have helped local firms in developing countries to adopt technical PRERs overseas. On the other hand, indigenous firms that do not belong to global value chains might face hurdles to keep exporting to the regulated markets. PRERs could become a barrier for firms that attempt to the regulated markets without supports by MNC lead firms.
Resumo:
This paper sheds light on the important role played by global supply chains in the adaptation to product-related environmental regulations imposed by importing countries, with a focus on chemicals management. By utilizing a unique data collected in Penang, Malaysia, we depict the supply chain structures and how differences among firms in participation to global supply chain link to differences in chemical management. We found that firms belonging to a supply chain are in a better position to comply with these regulations because information and requirements are transmitted through global supply chains. In contrast, those firms that are neither exporters nor a part of a global supply chain lack the knowledge and information channels relevant to chemical management in a product.
Resumo:
The objective of the present study is to examine the determinants of ISO 9001 certification, focusing on the effect of Product-related Environmental Regulations on Chemicals (PRERCs) and FDI using the answers to several questions in our Vietnam survey conducted from December 2011 to January 2012. Our findings suggest that PRERCs may help with the improvement in quality control of Vietnamese firms. If Vietnamese manufacturing firms with ISO 9001 certification are more likely to adopt ISO 14001, as well as firms in developed countries, our results indicate that the European chemical regulations may assist in the reduction of various environmental impacts in Vietnam. In addition, we found that FDI promotes the adoption of ISO 9001. If FDI firms in Vietnam certify ISO 14001 after the adoption of ISO 9001, as in the case of Malaysia and the developed economies, FDI firms may also be able to improve environmental performance as a result of ISO 14001.
Resumo:
Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.
Resumo:
To date, the negotiations over chemicals in the Translatlantic Trade and Investment Partnership (TTIP) have not shown sufficient ambition. The talks have focused too much on the differences in the two ‘systems’, rather than on the actual levels of health and environmental protection for substances regulated by both the US and the EU. Given the accomplishments within the OECD and the UN Globally Harmonised System of Classification and Labelling of Chemicals (GHS), the question is whether TTIP can be any more ambitious in the area of chemicals? We find that there is no detailed or systematic knowledge about how the two levels of protection in chemicals compare, although caricatures and stereotypes abound. This is partly due to an obsessive focus on a single US federal law, the Toxic Subtances Control Act (TSCA), whereas in practice US protection depends on many statutes and regulations, as well as on voluntary withdrawals (under pressure from the Environmental Protection Agency) and severe common law liability. This paper makes the economic case for firmly addressing the regulatory barriers, discusses the EU’s proposals, finds that the European Parliament’s Resolution on TTIP of July 2015 lacks a rationale (for chemicals), argues that both TSCA and REACH ought to be improved (based on ‘better regulation’), discusses the link with a global regime, advocates significant improvement of market access where equivalence of health and environmental objectives is agreed and, finally, proposes to lower the costs for companies selling in both markets by allowing them to opt into the other party’s more stringent rules, thereby avoiding duplication while racing-to-the-top. The ‘living agreement’ on chemicals ought to be led by a new TTIP institution authorised to establish the level of health and environmental protection on both sides of the Atlantic for substances regulated on both sides. These findings will lay the foundation for a highly beneficial lowering of trading costs without in any way affecting the level of protection. Indeed, this is exactly what TTIP is, or should be, all about.This paper is the 10th in a series produced in the context of the “TTIP in the Balance” project, jointly organised by CEPS and the Center for Transatlantic Relations (CTR) in Washington, D.C. It is published simultaneously on the CEPS (www.ceps.eu) and CTR websites (http://transatlantic.sais-jhu.edu).
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.