989 resultados para Enrichment factor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine biological productivity has been invoked as a possible climate driver during the early Paleogene through its potential influence on atmospheric carbon dioxide concentrations. However, the relationship of export productivity (the flux of organic carbon (C) from the surface ocean to the deep ocean) to organic C burial flux (the flux of organic C from the deep ocean that is buried in marine sediments) is not well understood. We examine the various components involved with atmosphere-to-ocean C transfer by reconstructing early Paleogene carbonate and silica production (using carbonate and silica mass accumulation rates (MARs)); export productivity (using biogenic barium (bio-Ba) MARs); organic C burial flux (using reactive phosphorus (P) MARs); redox conditions (using uranium and manganese contents); and the fraction of organic C buried relative to export productivity (using reactive P to bio-Ba ratios). Our investigations concentrate on Paleocene/Eocene sections of Sites 689/690 from Maud Rise and Site 738 from Kerguelen Plateau. In both regions, export productivity, organic C burial flux, and the fraction of organic C buried relative to export productivity decreased from the Paleocene/early Eocene to the middle Eocene. A shift is indicated from an early Paleogene two-gyre circulation in which nutrients were not efficiently recycled to the surface via upwelling in these regions, to a circulation more like the present day with efficient recycling of nutrients to the surface ocean. Export productivity was enhanced for Kerguelen Plateau relative to Maud Rise throughout the early Paleogene, possibly due to internal waves generated by the plateau regardless of gyre circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal diffusion enrichment apparatus in use in Amsterdam before 1967, has been rebuilt in the Groningen Radiocarbon Dating Laboratory. It has been shown to operate reliably and reproducibly. A reasonable agreement exists between the theoretical calculations and the experimental results. The 14C enrichment of a CO sample is deduced from the simultaneous mass 30 enrichment, which is measured with a mass spectrometer. The relation between both enrichments follows from a series of calibration measurements. The over-all accuracy in the enrichment is a few percent, equivalent to a few hundred years in age. The main problem in dating very old samples is their possible contamination with recent carbon. Generally, careful sample selection and rigorous pretreatment reduce sample contamination to an acceptable value. Also, it has been established that laboratory contamination, due to a memory effect in the combustion system and to impurities in the oxygen and nitrogen gas used for combustion, can be eliminated. A detailed analysis shows that the counter background in our set-up is almost exclusively caused by cosmic ray muons. The measurement of 28 early glacial samples, mostly from North-west Europe, has yielded a consistent set of ages. These indicate the existence of three early glacial interstadials; using the Weichselian definitions: Amersfoort starting at 68 200 ± 1100, Brørup at 64 400 ± 800 and Odderade at 60 500 ± 600 years BP. This 14C chronology shows good agreement with the Camp Century chronology and the dated palaeo sea levels. The discrepancy in the age of the early part of the Last Glacial on the 14C time scale and on that adopted for the deep-sea d18 record, must probably be attributed to the use of a generalized d18 curve and a wrong interpretation of this curve in terms of three Barbados terraces.