995 resultados para Enhanced Plasticity
Resumo:
Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4
Resumo:
Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used b-tricalcium phosphate (b-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to b-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the b-TCP stimulation, indicating that macrophage may participate in the b-TCP stimulated osteogenesis. Interestingly, when macrophageconditioned b-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials.
Resumo:
INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.
Resumo:
We demonstrate a simple electrochemical route to produce uniformly sized gold nanospikes without the need for a capping agent or prior modification of the electrode surface, which are predominantly oriented in the {111} crystal plane and exhibit promising electrocatalytic and SERS properties.
Resumo:
We demonstrate that a three dimensional (3D) crystalline tungsten trioxide (WO3) nanoporous network, directly grown on a transparent conductive oxide (TCO) substrate, is a suitable working electrode material for high performance electrochromic devices. This nanostructure, with achievable thicknesses of up to 2 μm, is prepared at room temperature by the electrochemical anodization of a RF-sputtered tungsten film deposited on a fluoride doped tin oxide (FTO) conductive glass, under low applied anodic voltages and mild chemical dissolution conditions. For the crystalline nanoporous network with thicknesses ranging from 0.6 to 1 μm, impressive coloration efficiencies of up to 141.5 cm2 C−1 are achieved by applying a low coloration voltage of −0.25 V. It is also observed that there is no significant degradation of the electrochromic properties of the porous film after 2000 continuous coloration–bleaching cycles. The remarkable electrochromic characteristics of this crystalline and nanoporous WO3 are mainly ascribed to the combination of a large surface area, facilitating increased intercalation of protons, as well as excellent continuous and directional paths for charge transfer and proton migration in the highly crystalline material.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.
Resumo:
Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.
Resumo:
Objective This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force thanthe hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock.
Resumo:
Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.
Resumo:
The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to various regulations that require data and operations to reside in specific geographic locations. Thus, cloud users may want to be sure that their stored data have not been relocated into unknown geographic regions that may compromise the security of their stored data. Albeshri et al. (2012) combined proof of storage (POS) protocols with distance-bounding protocols to address this problem. However, their scheme involves unnecessary delay when utilising typical POS schemes due to computational overhead at the server side. The aim of this paper is to improve the basic GeoProof protocol by reducing the computation overhead at the server side. We show how this can maintain the same level of security while achieving more accurate geographic assurance.
Resumo:
Guaranteeing the quality of extracted features that describe relevant knowledge to users or topics is a challenge because of the large number of extracted features. Most popular existing term-based feature selection methods suffer from noisy feature extraction, which is irrelevant to the user needs (noisy). One popular method is to extract phrases or n-grams to describe the relevant knowledge. However, extracted n-grams and phrases usually contain a lot of noise. This paper proposes a method for reducing the noise in n-grams. The method first extracts more specific features (terms) to remove noisy features. The method then uses an extended random set to accurately weight n-grams based on their distribution in the documents and their terms distribution in n-grams. The proposed approach not only reduces the number of extracted n-grams but also improves the performance. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms the state-of-art methods underpinned by Okapi BM25, tf*idf and Rocchio.
Resumo:
To enhance the performance of the k-nearest neighbors approach in forecasting short-term traffic volume, this paper proposed and tested a two-step approach with the ability of forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is introduced, and then local minima of the distances between the state vectors are ranked to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable impact, a novel algorithm with attractive analytical features is developed based on the principle component. The enhanced KNN method has been evaluated using the field data, and our comparison analysis shows that it outperformed the competing algorithms in most cases.
Resumo:
This article presents an approach to improve and monitor the behavior of a skid-steering rover on rough terrains. An adaptive locomotion control generates speeds references to avoid slipping situations. An enhanced odometry provides a better estimation of the distance travelled. A probabilistic classification procedure provides an evaluation of the locomotion efficiency on-line, with a detection of locomotion faults. Results obtained with a Marsokhod rover are presented throughout the paper
Resumo:
ZnO is a promising photoanode material for dye-sensitized solar cells (DSCs) due to its high bulk electron mobility and because different geometrical structures can easily be tailored. Although various strategies have been taken to improve ZnO-based DSC efficiencies, their performances are still far lower than TiO2 counterparts, mainly because low conductivity Zn2+–dye complexes form on the ZnO surfaces. Here, cone-shaped ZnO nanocrystals with exposed reactive O-terminated {101̅1} facets were synthesized and applied in DSC devices. The devices were compared with DSCs made from more commonly used rod-shaped ZnO nanocrystals where {101̅0} facets are predominantly exposed. When cone-shaped ZnO nanocrystals were used, DSCs sensitized with C218, N719, and D205 dyes universally displayed better power conversion efficiency, with the highest photoconversion efficiency of 4.36% observed with the C218 dye. First-principles calculations indicated that the enhanced DSCs performance with ZnO nanocone photoanodes could be attributed to the strength of binding between the dye molecules and reactive O-terminated {101̅1} ZnO facets and that more effective use of dye molecules occurred due to a significantly less dye aggregation on these ZnO surfaces compared to other ZnO facets.