737 resultados para Engineering Education--Demonstrations
Resumo:
Over recent years, the role of engineering in promoting a sustainable society has received much public attention [1] with particular emphasis given to the need to promote the future prosperity and security of society through the recruitment and education of more engineers [2,3]. From an employment perspective, the Leitch Review [4] suggested that ‘generic’ transferable employability skills development should constitute a more substantial part of university education. This paper argues that the global drivers impacting engineering education [5] correlate strongly to those underpinning the Leitch review, therefore the question of how to promote transferable employability skills within the wider engineering curriculum is increasingly relevant. By exploring the use of heritage in the engineering curriculum as a way to promote learning and engage students, a less familiar approach to study is discussed. This approach moves away from stereotypical notions of the use of information technology as representing the pinnacle of innovation in education. Taking the student experience as its starting point, the paper draws upon the findings of an exploratory study critically analysing the pedagogical value of using heritage in engineering education. It discusses a teaching approach in which engineering students are taken out of their ‘comfort zone’ - away from the classroom, laboratory and computer, to a heritage site some 100 miles away from the university. The primary learning objective underpinning this approach is to develop students’ transferable skills by encouraging them to consider how to apply theoretical concepts to a previously unexplored situation. By reflecting upon students’ perceptions of the value of this approach, and by identifying how heritage may be utilised as an innovative learning and teaching approach in engineering education, this paper makes a notable contribution to current pedagogical debates in the discipline.
Resumo:
A critique of experiential learning in engineering
Resumo:
This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.
Resumo:
This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.
Resumo:
In the paper, methodological aspects of nowadays high engineering education are considered. Thoughts generalizing author’s long-term experience are set forth. Recommendations on the improvement of pedagogical process and training system for young teachers are given.
Resumo:
This article reports on an investigationwith first year undergraduate ProductDesign and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem which involved designing a simple bridge to cross a river.They were given a talk on problemsolving and given a rubric to follow, if they chose to do so.They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order tomake assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualize a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.
Resumo:
Grounded in the findings of a three year exploratory student whereby teachers' and policy makers' perceptions of elementary level engineering education were analysed, this paper focuses upon three strands of engineering education activity: Pedagogy: Practice, and: Policy. Taking into account the challenges associated with introducing engineering education at an elementary level across the UK, the paper critiques the role played by the 'competition model' in promoting engineering to children and 4 to 11 years. In considering the 'added value' that appropriately developed engineering education activities can offer in the classroom the discussion argues that elementary level engineering has the potential to reach across the curriculum, offering context and depth in many different areas. The paper concludes by arguing that by introducing the discipline to children at a foundational level, switching on their 'Engineering Imaginations' and getting them to experience the value and excitement of engineering, maths and applied science a new "Educational Frontier" will be forged. © American Society for Engineering Education, 2014.
Resumo:
Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research. © 2012 The Institution of Chemical Engineers.
Resumo:
The UK Government and large employers have recognised the skills gap between learners leaving the education system and the requirements of employers. The current system is seen to be failing significant numbers of learners and has been accused of schooling but not educating our young people. University-led technical colleges are one part of the solution being developed to provide outstanding engineering education. This paper focusses on the learning experience that the Aston University Engineering Academy, the first University-led University Technical College (UTC), has created for entrants to the Engineering Academy in September 2012, when it opens in brand new buildings next to the University. The overall aim is to produce technically literate young people that have business and enterprise skills as well as insight into the diverse range of opportunities in Engineering and Technical disciplines. The project has brought University staff and students together with employers and Academy staff to optimise the engineering education that they will receive. The innovative model presented has drawn on research from across the world in the implementation of this new type of school, as well as educational practices from the USA and the Scandinavian countries. The resulting curriculum is authentic and exciting and expands the University model of problem-based learning and placements into the secondary school environment. The benefits of this close partnership for University staff and students, the employers and the Academy staff are expanded on and the paper concludes with a prediction of progression routes from the Academy.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
Learning and teaching approaches to engineering are generally perceived to be difficult and academically challenging. Such challenges are reflected in high levels of student attrition and failure. In addressing this issue, a unique approach to engineering education has been developed by the paper authors. This approach, which is suitable for undergraduate and postgraduate levels, brings together pedagogic and engineering epistemologies in an empirically grounded framework. It is underpinned by three distinctive concepts: Relationships, Variety & Synergy. Based upon research, the R + V + S approach to Engineering Education provides a learning and teaching strategy, which in enhancing the student experience, increases retention and positively impacts student success [S2]. Based on the study findings, this paper shows how, by designing engineering education around the concepts of Relationships, Variety and Synergy, the student learning experience becomes one that is academically challenging yet beneficial to both students and engineering educators. The challenge is to widen and test the approach in other areas of engineering education, before going on to investigate the value of the approach in other disciplines.
Resumo:
The aim of this paper is to explore the engineering lecturers' experiences of generic skills assessment within an active learning context in Malaysia. Using a case-study methodology, lecturers' assessment approaches were investigated regarding three generic skills; verbal communication, problem solving and team work. Because of the importance to learning of the assessment of such skills it is this assessment that is discussed. The findings show the lecturers' initial feedback to have been generally lacking in substance, since they have limited knowledge and experience of assessing generic skills. Typical barriers identified during the study included; generic skills not being well defined, inadequate alignment across the engineering curricula and teaching approaches, assessment practices that were too flexible, particular those to do with implementation; and a failure to keep up to date with industrial requirements. The emerging findings of the interviews reinforce the arguments that there is clearly much room for improvement in the present state of generic skills assessment.
Resumo:
This positional paper proposes a conceptual framework and methodological approach for use in a PhD study investigating the longer term educational and social impact of 'active' engineering focused interventions for children age 8-10 in the UK. The study will critically analyse how a child's participation in an engineering education activity contributes to the Engineering Capital that the child possesses; focusing on how the child's awareness and perceptions about engineering are affected. To achieve this aim it is proposed that Grounded Theory methodology be used to enable an in-depth analysis of participation from the perspective of the child participant. The study proposed will be longitudinal, taking place over three formative years for the education and career aspirations of the child, from age 8-10 to 11-13. Although the research is in its infancy, this paper will provide the opportunity to develop theory in an underdeveloped area of engineering education research.
Resumo:
Based on the emergent findings of a pilot study which examined the issues around introducing Peer Mentoring into an Engineering School, this paper, which is very much a 'work in progress', describes and discusses results from the first year of what will be a three year exploratory study. Focusing on three distinctive concepts integral to the student experience, Relationships, Variety and Synergy, the study follows an Action Research Design in that it aims to find a realistic and workable solution to issues of attrition within the Engineering School in which the Project and Study are set. Starting with the research question "Does Peer Mentoring improve engineering students' transition into university?"', the Pilot Project and Study will run for three years, each year building on the lessons of the previous year.