920 resultados para Engineering, Biomedical|Engineering, Electronics and Electrical|Physics, Electricity and Magnetism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this investigation was to develop new techniques to generate segmental assessments of body composition based on Segmental Bioelectrical Impedance Analysis (SBIA). An equally important consideration was the design, simulation, development, and the software and hardware integration of the SBIA system. This integration was carried out with a Very Large Scale Integration (VLSI) Field Programmable Gate Array (FPGA) microcontroller that analyzed the measurements obtained from segments of the body, and provided full body and segmental Fat Free Mass (FFM) and Fat Mass (FM) percentages. Also, the issues related to the estimate of the body's composition in persons with spinal cord injury (SCI) were addressed and investigated. This investigation demonstrated that the SBIA methodology provided accurate segmental body composition measurements. Disabled individuals are expected to benefit from these SBIA evaluations, as they are non-invasive methods, suitable for paralyzed individuals. The SBIA VLSI system may replace bulky, non flexible electronic modules attached to human bodies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents a unique research opportunity by using recordings which provide electrocardiogram (ECG) plus a reference breathing signal (RBS). ECG derived breathing (EDR) is measured and correlated against RBS. Standard deviations of multiresolution wavelet analysis coefficients (SDMW) are obtained from heart rate and classified using RBS. Prior works by others used select patients for sleep apnea scoring with EDR but no RBS. Another prior work classified select heart disease patients with SDMW but no RBS. This study used randomly chosen sleep disorder patient recordings; central and obstructive apneas, with and without heart disease.^ Implementation required creating an application because existing systems were limited in power and scope. A review survey was created to choose a development environment. The survey is presented as a learning tool and teaching resource. Development objectives were rapid development using limited resources (manpower and money). Open Source resources were used exclusively for implementation. ^ Results show: (1) Three groups of patients exist in the study. Grouping RBS correlations shows a response with either ECG interval or amplitude variation. A third group exists where neither ECG intervals nor amplitude variation correlate with breathing. (2) Previous work done by other groups analyzed SDMW. Similar results were found in this study but some subjects had higher SDMW, attributed to a large number of apneas, arousals and/or disconnects. SDMW does not need RBS to show apneic conditions exist within ECG recordings. (3) Results in this study support the assertion that autonomic nervous system variation was measured with SDMW. Measurements using RBS are not corrupted due to breathing even though respiration overlaps the same frequency band.^ Overall, this work becomes an Open Source resource which can be reused, modified and/or expanded. It might fast track additional research. In the future the system could also be used for public domain data. Prerecorded data exist in similar formats in public databases which could provide additional research opportunities. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, urban vehicular ad hoc networks (VANETs) are gaining importance for inter-vehicle communication, because they allow for the local communication between vehicles without any infrastructure, configuration effort, and without expensive cellular networks. But such architecture may increase the complexity of routing since there is no central control system in urban VANETs. Therefore, a challenging research task is to improve urban VANETs' routing efficiency. ^ Hence, in this dissertation we propose two location-based routing protocols and a location management protocol to facilitate location-based routing in urban VANETs. The Multi-hop Routing Protocol (MURU) is proposed to make use of predicted mobility and geometry map in urban VANETs to estimate a path's life time and set up robust end-to-end routing paths. The Light-weight Routing Protocol (LIRU) is proposed to take advantage of the node diversity under dynamic channel condition to exploit opportunistic forwarding to achieve efficient data delivery. A scalable location management protocol (MALM) is also proposed to support location-based routing protocols in urban VANETs. MALM uses high mobility in VANETs to help disseminate vehicles' historical location information, and a vehicle is able to implement Kalman-filter based predicted to predict another vehicle's current location based on its historical location information. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last 10 years, the development and the understanding of the mechanical properties of thin film material have been essential for improving the reliability and lifetime in operation of microelectromechanical systems (MEMS). Although the properties of a bulk material might be well characterized, thin-film properties are considerably different from those of the bulk and it cannot be assumed that mechanical properties measured using bulk specimens will apply to the same materials when used as a thin film in MEMS. For many microelectronic thin films, the material properties depend strongly on the details of the deposition process and the growth conditions on its substrate. ^ The purpose of this dissertation is to determine the temperature dependence of a gold thin film membrane on the pull down voltage of a MEMS switch as the temperature is varied from room temperature (300 K) to cryogenic temperature (10 K). For this purpose, an RF MEMS shunt switch was designed and fabricated. The switch is composed of a gold coplanar waveguide structure with a gold bridge membrane suspended above an area of the center conductor which is covered by a dielectric (BaTiO3). The gold membrane is actuated by an electrostatic force acting between the transmission line and the membrane when voltage is applied. ^ Material characterization of the gold evaporated thin film membrane was obtained via AFM, SEM, TEM and X-ray diffraction analyses. A mathematical relation was used to estimate the pull down voltage of the switch at cryogenic temperature and results showed that the mathematical theory match the experimental values of the tested MEMS switches. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation proposed a new approach to seizure detection in intracranial EEG recordings using nonlinear decision functions. It implemented well-established features that were designed to deal with complex signals such as brain recordings, and proposed a 2-D domain of analysis. Since the features considered assume both the time and frequency domains, the analysis was carried out both temporally and as a function of different frequency ranges in order to ascertain those measures that were most suitable for seizure detection. In retrospect, this study established a generalized approach to seizure detection that works across several features and across patients. ^ Clinical experiments involved 8 patients with intractable seizures that were evaluated for potential surgical interventions. A total of 35 iEEG data files collected were used in a training phase to ascertain the reliability of the formulated features. The remaining 69 iEEG data files were then used in the testing phase. ^ The testing phase revealed that the correlation sum is the feature that performed best across all patients with a sensitivity of 92% and an accuracy of 99%. The second best feature was the gamma power with a sensitivity of 92% and an accuracy of 96%. In the frequency domain, all of the 5 other spectral bands considered, revealed mixed results in terms of low sensitivity in some frequency bands and low accuracy in other frequency bands, which is expected given that the dominant frequencies in iEEG are those of the gamma band. In the time domain, other features which included mobility, complexity, and activity, all performed very well with an average a sensitivity of 80.3% and an accuracy of 95%. ^ The computational requirement needed for these nonlinear decision functions to be generated in the training phase was extremely long. It was determined that when the duration dimension was rescaled, the results improved and the convergence rates of the nonlinear decision functions were reduced dramatically by more than a 100 fold. Through this rescaling, the sensitivity of the correlation sum improved to 100% and the sensitivity of the gamma power to 97%, which meant that there were even less false negatives and false positives detected. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increase in traffic on the internet, there is a greater demand for wireless mobile and ubiquitous applications. These applications need antennas that are not only broadband, but can also work in different frequency spectrums. Even though there is a greater demand for such applications, it is still imperative to conserve power. Thus, there is a need to design multi-broadband antennas that do not use a lot of power. Reconfigurable antennas can work in different frequency spectrums as well as conserve power. The current designs of reconfigurable antennas work only in one band. There is a need to design reconfigurable antennas that work in different frequency spectrums. In this current era of high power consumption there is also a greater demand for wireless powering. This dissertation explores ideal designs of reconfigurable antennas that can improve performance and enable wireless powering. This dissertation also presents lab results of the multi-broadband reconfigurable antenna that was created. A detailed mathematical analyses, as well as extensive simulation results are also presented. The novel reconfigurable antenna designs can be extended to Multiple Input Multiple Output (MIMO) environments and military applications.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. ^ Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. ^ As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. ^ In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow Cytometry analyzers have become trusted companions due to their ability to perform fast and accurate analyses of human blood. The aim of these analyses is to determine the possible existence of abnormalities in the blood that have been correlated with serious disease states, such as infectious mononucleosis, leukemia, and various cancers. Though these analyzers provide important feedback, it is always desired to improve the accuracy of the results. This is evidenced by the occurrences of misclassifications reported by some users of these devices. It is advantageous to provide a pattern interpretation framework that is able to provide better classification ability than is currently available. Toward this end, the purpose of this dissertation was to establish a feature extraction and pattern classification framework capable of providing improved accuracy for detecting specific hematological abnormalities in flow cytometric blood data. ^ This involved extracting a unique and powerful set of shift-invariant statistical features from the multi-dimensional flow cytometry data and then using these features as inputs to a pattern classification engine composed of an artificial neural network (ANN). The contribution of this method consisted of developing a descriptor matrix that can be used to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant lymphocytes, which are blood cells that are potentially indicative of disorders such as leukemia and infectious mononucleosis. ^ This study showed that the set of shift-and-rotation-invariant statistical features extracted from the eigensystem of the flow cytometric data pattern performs better than other commonly-used features in this type of disease detection, exhibiting an accuracy of 80.7%, a sensitivity of 72.3%, and a specificity of 89.2%. This performance represents a major improvement for this type of hematological classifier, which has historically been plagued by poor performance, with accuracies as low as 60% in some cases. This research ultimately shows that an improved feature space was developed that can deliver improved performance for the detection of variant lymphocytes in human blood, thus providing significant utility in the realm of suspect flagging algorithms for the detection of blood-related diseases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^