924 resultados para Engineered Ecosystem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safe and responsible development of engineered nanomaterials (ENM), nanotechnology-based materials and products, together with the definition of regulatory measures and implementation of "nano"-legislation in Europe require a widely supported scientific basis and sufficient high quality data upon which to base decisions. At the very core of such a scientific basis is a general agreement on key issues related to risk assessment of ENMs which encompass the key parameters to characterise ENMs, appropriate methods of analysis and best approach to express the effect of ENMs in widely accepted dose response toxicity tests. The following major conclusions were drawn: Due to high batch variability of ENMs characteristics of commercially available and to a lesser degree laboratory made ENMs it is not possible to make general statements regarding the toxicity resulting from exposure to ENMs. 1) Concomitant with using the OECD priority list of ENMs, other criteria for selection of ENMs like relevance for mechanistic (scientific) studies or risk assessment-based studies, widespread availability (and thus high expected volumes of use) or consumer concern (route of consumer exposure depending on application) could be helpful. The OECD priority list is focussing on validity of OECD tests. Therefore source material will be first in scope for testing. However for risk assessment it is much more relevant to have toxicity data from material as present in products/matrices to which men and environment are be exposed. 2) For most, if not all characteristics of ENMs, standardized methods analytical methods, though not necessarily validated, are available. Generally these methods are only able to determine one single characteristic and some of them can be rather expensive. Practically, it is currently not feasible to fully characterise ENMs. Many techniques that are available to measure the same nanomaterial characteristic produce contrasting results (e.g. reported sizes of ENMs). It was recommended that at least two complementary techniques should be employed to determine a metric of ENMs. The first great challenge is to prioritise metrics which are relevant in the assessment of biological dose response relations and to develop analytical methods for characterising ENMs in biological matrices. It was generally agreed that one metric is not sufficient to describe fully ENMs. 3) Characterisation of ENMs in biological matrices starts with sample preparation. It was concluded that there currently is no standard approach/protocol for sample preparation to control agglomeration/aggregation and (re)dispersion. It was recommended harmonization should be initiated and that exchange of protocols should take place. The precise methods used to disperse ENMs should be specifically, yet succinctly described within the experimental section of a publication. 4) ENMs need to be characterised in the matrix as it is presented to the test system (in vitro/ in vivo). 5) Alternative approaches (e.g. biological or in silico systems) for the characterisation of ENMS are simply not possible with the current knowledge. Contributors: Iseult Lynch, Hans Marvin, Kenneth Dawson, Markus Berges, Diane Braguer, Hugh J. Byrne, Alan Casey, Gordon Chambers, Martin Clift, Giuliano Elia1, Teresa F. Fernandes, Lise Fjellsbø, Peter Hatto, Lucienne Juillerat, Christoph Klein, Wolfgang Kreyling, Carmen Nickel1, and Vicki Stone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-insulin-dependent, or type II, diabetes mellitus is characterized by a progressive impairment of glucose-induced insulin secretion by pancreatic beta cells and by a relative decreased sensitivity of target tissues to the action of this hormone. About one third of type II diabetic patients are treated with oral hypoglycemic agents to stimulate insulin secretion. These drugs however risk inducing hypoglycemia and, over time, lose their efficacy. An alternative treatment is the use of glucagon-like peptide-1 (GLP-1), a gut peptidic hormone with a strong insulinotropic activity. Its activity depends of the presence of normal blood glucose concentrations and therefore does not risk inducing hypoglycemia. GLP-1 can correct hyperglycemia in diabetic patients, even in those no longer responding to hypoglycemic agents. Because it is a peptide, GLP-1 must be administered by injection; this may prevent its wide therapeutic use. Here we propose to use cell lines genetically engineered to secrete a mutant form of GLP-1 which has a longer half-life in vivo but which is as potent as the wild-type peptide. The genetically engineered cells are then encapsulated in semi-permeable hollow fibers for implantation in diabetic hosts for constant, long-term, in situ delivery of the peptide. This approach may be a novel therapy for type II diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amiloride-sensitive epithelial sodium channel is the limiting step in salt absorption. In mice, this channel is composed of three subunits (alpha, beta, and gamma), which are encoded by different genes (Scnn1a, Scnn1b, and Scnn1c, respectively). The functions of these genes were recently investigated in transgenic (knockout) experiments, and the absence of any subunit led to perinatal lethality. More defined phenotypes have been obtained by introducing specific mutations or using transgenic rescue experiments. In this report, these approaches are summarized and a current gene-targeting strategy to obtain conditional inactivation of the channel is illustrated. This latter approach will be indispensable for the investigation of channel function in a wide variety of organ systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted b diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to describe the process and challenges in building exposure scenarios for engineered nanomaterials (ENM), using an exposure scenario format similar to that used for the European Chemicals regulation (REACH). Over 60 exposure scenarios were developed based on information from publicly available sources (literature, books, and reports), publicly available exposure estimation models, occupational sampling campaign data from partnering institutions, and industrial partners regarding their own facilities. The primary focus was on carbon-based nanomaterials, nano-silver (nano-Ag) and nano-titanium dioxide (nano-TiO2), and included occupational and consumer uses of these materials with consideration of the associated environmental release. The process of building exposure scenarios illustrated the availability and limitations of existing information and exposure assessment tools for characterizing exposure to ENM, particularly as it relates to risk assessment. This article describes the gaps in the information reviewed, recommends future areas of ENM exposure research, and proposes types of information that should, at a minimum, be included when reporting the results of such research, so that the information is useful in a wider context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D engineered modeling is a relatively new and developing technology that can provide numerous benefits to owners, engineers, contractors, and the general public. This manual is for highway agencies that are considering or are in the process of switching from 2D plan sets to 3D engineered models in their highway construction projects. It will discuss some of the benefits, applications, limitations, and implementation considerations for 3D engineered models used for survey, design, and construction. Note that is not intended to cover all eventualities in all states regarding the deployment of 3D engineered models for highway construction. Rather, it describes how one state—Iowa—uses 3D engineered models for construction of highway projects, from planning and surveying through design and construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salicylic acid (SA) plays a central role as a signalling molecule involved in plant defense against microbial attack. Genetic manipulation of SA biosynthesis may therefore help to generate plants that are more disease-resistant. By fusing the two bacterial genes pchA and pchB from Pseudomonas aeruginosa, which encode isochorismate synthase and isochorismate pyruvate-lyase, respectively, we have engineered a novel hybrid enzyme with salicylate synthase (SAS) activity. The pchB-A fusion was expressed in Arabidopsis thaliana under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, with targeting of the gene product either to the cytosol (c-SAS plants) or to the chloroplast (p-SAS plants). In p-SAS plants, the amount of free and conjugated SA was increased more than 20-fold above wild type (WT) level, indicating that SAS is functional in Arabidopsis. P-SAS plants showed a strongly dwarfed phenotype and produced very few seeds. Dwarfism could be caused by the high SA levels per se or, perhaps more likely, by a depletion of the chorismate or isochorismate pools of the chloroplast. Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment. Although this modest increase in total SA content did not strongly induce the resistance marker PR-1, it resulted nevertheless in enhanced disease resistance towards a virulent isolate of Peronospora parasitica. Increased resistance of c-SAS lines was paralleled with reduced seed production. Taken together, these results illustrate that SAS is a potent tool for the manipulation of SA levels in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystems are complex systems and changing one of their components can alter their whole functioning. Decomposition and biodiversity are two factors that play a role in this stability, and it is vital to study how these two factors are interrelated and how other factors, whether of human origin or not, can affect them. This study has tested different hypotheses regarding the effects of pesticides and invasive species on the biodiversity of the soil fauna and litter decomposition rate. Decomposition was measured using the litterbags technique. Our results indicate that pesticides had a negative effect on decomposition whereas invasive species increased decomposition rate. At the same time, the diversity of the soil biota was unaffected by either factor. These results allow us to better understand the response of important ecosystem functions to human‐induced alterations, in order to mitigate harmful effects or restore them wherever necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology encompasses the design, characterisation, production and application of materials and systems by controlling shape and size at the nanoscale (nanometres). Nanomaterials may differ from other materials because of their relatively large specific surface area, such that surface properties become particularly important. There has been rapid growth in investment in nanotechnology by both the public and private sectors worldwide. In the EU, nanotechnology is expected to become an important strategic contributor to achieving economic gain and societal and individual benefits. At the same time there is continuing scientific uncertainty and controversy about the safety of nanomaterials. It is important to ensure that timely policy development takes this into consideration. Uncertainty about safety may lead to polarised public debate and to business unwillingness to invest further. A clear regulatory framework to address potential health and environmental impacts, within the wider context of evaluating and communicating the benefit-risk balance, must be a core part of Europe's integrated efforts for nanotechnology innovation. While a number of studies have been carried out on the effect of environmental nanoparticles, e.g. from combustion processes, on human health, there is yet no generally acceptable paradigm for safety assessment of nanomaterials in consumer and other products. Therefore, a working group was established to consider issues for the possible impact of nanomaterials on human health focussing specifically on engineered nanomaterials. This represents the first joint initiative between EASAC and the Joint Research Centre of the European Commission. The working group was given the remit to describe the state of the art of benefits and potential risks, current methods for safety assessment, and to evaluate their relevance, identify knowledge gaps in studying the safety of current nanomaterials, and recommend on priorities for nanomaterial research and the regulatory framework. This report focuses on key principles and issues, cross-referencing other sources for detailed information, rather than attempting a comprehensive account of the science. The focus is on human health although environmental effects are also discussed when directly relevant to health