927 resultados para Energy(all)
Resumo:
Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.
Impact of design options in zero energy building conception: the case of large buildings in Portugal
Resumo:
The new recast of Directive 2010/31/EU in order to implement the new concept NZEB in new buildings, is to be fully respected by all Member States, and is revealed as important measure to promote the reduction of energy consumption of buildings and encouraging the use of renewable energy. In this study, it was tested the applicability of the nearly zero energy building concept to a big size office building and its impact after a 50-years life cycle span.
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Energy consumption is one of the major issues for modern embedded systems. Early, power saving approaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy consumption. However, technology improvements resulted in a case where static power dissipation increasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with several sleep states. We propose a set of leakage-aware energy management approaches that reduce the energy consumption of embedded real-time systems while respecting the real-time constraints. Our algorithms are based on the race-to-halt strategy that tends to run the system at top speed with an aim to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algorithms is illustrated with an extensive set of simulations that show an improvement of up to 8% reduction in energy consumption over existing work at high utilization. The complexity of our algorithms is smaller when compared to state-of-the-art algorithms. We also eliminate assumptions made in the related work that restrict the practical application of the respective algorithms. Moreover, a novel study about the relation between the use of sleep intervals and the number of pre-emptions is also presented utilizing a large set of simulation results, where our algorithms reduce the experienced number of pre-emptions in all cases. Our results show that sleep states in general can save up to 30% of the overall number of pre-emptions when compared to the sleep-agnostic earliest-deadline-first algorithm.
Resumo:
This work introduces a novel idea for wireless energy transfer, proposing for the first time the unit-cell of an indoor localization and RF harvesting system embedded into the floor. The unit-cell is composed by a 5.8 GHz patch antenna surrounded by a 13.56 MHz coil. The coil locates a device and activate the patch which, connected to a power grid, radiates to wirelessly charge the localized device. The HF and RF circuits co-existence and functionality are demonstrated in this paper, the novelty of which is also in the adoption of low cost and most of all ecofriendly materials, such as wood and cork, as substrates for electronics.
Resumo:
This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system. © 2016 Springer International Publishing. All rights are reserved.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
In this study, energy production for autonomous underwater vehicles is investigated. This project is part of a bigger project called TURTLE. The autonomous vehicles perform oceanic researches at seabed for which they are intended to be kept operational underwater for several months. In order to ful l a long-term underwater condition, powerful batteries are combined with \micro- scale" energy production on the spot. This work tends to develop a system that generates power up to a maximum of 30 W. Latter energy harvesting structure consists basically of a turbine combined with a generator and low-power electronics to adjust the achieved voltage to a required battery charger voltage. Every component is examined separately hence an optimum can be de ned for all, and subsequently also an overall optimum. Di erent design parameters as e.g. number of blades, solidity ratio and cross-section area are compared for di erent turbines, in order to see what is the most feasible type. Further, a generator is chosen by studying how ux distributions might be adjusted to low velocities, and how cogging torque can be excluded by adapted designs. Low-power electronics are con gured in order to convert and stabilize heavily varying three-phase voltages to a constant, recti ed voltage which is usable for battery storage. Clearly, di erent component parameters as maximum power and torque are matched here to increase the overall power generation. Furthermore an overall maximum power is set up for achieving a maximum power ow at load side. Due to among others typical low velocities of about 0.1 to 0.5 m/s, and constructing limits of the prototype, the vast range of components is restricted to only a few that could be used. Hence, a helical turbine is combined in a direct drive mode to a coreless-stator axial- ux permanent-magnet generator, from which the output voltage is adjusted subsequently by a recti er, impedance matching unit, upconverter circuit and an overall control unit to regulate di erent component parameters. All these electronics are combined in a closed-loop design to involve positive feedback signals. Furthermore a theoretical con guration for the TURTLE vehicle is described in this work and a solution is proposed that might be implemented, for which several design tests are performable in a future study.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.
Resumo:
Wireless body area networks (WBANs) are expected to play a significant role in smart healthcare systems. One of the most important attributes of WBANs is to increase network lifetime by introducing novel and low-power techniques on the energy-constrained sensor nodes. Medium access control (MAC) protocols play a significant role in determining the energy consumption in WBANs. Existing MAC protocols are unable to accommodate communication requirements in WBANs. There is a need to develop novel, scalable and reliable MAC protocols that must be able to address all these requirements in a reliable manner. In this special issue, we attracted high quality research and review papers on the recent advances in MAC protocols for WBANs.
Resumo:
Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology Assessment
Resumo:
The superfluous consumption of energy is faced by the modern society as a Socio-Economical and Environmental problem of the present days. This situation is worsening given that it is becoming clear that the tendency is to increase energy price every year. It is also noticeable that people, not necessarily proficient in technology, are not able to know where savings can be achieved, due to the absence of accessible awareness mechanisms. One of the home user concerns is to balance the need of reducing energy consumption, while producing the same activity with all the comfort and work efficiency. The common techniques to reduce the consumption are to use a less wasteful equipment, altering the equipment program to a more economical one or disconnecting appliances that are not necessary at the moment. However, there is no direct feedback from this performed actions, which leads to the situation where the user is not aware of the influence that these techniques have in the electrical bill. With the intension to give some control over the home consumption, Energy Management Systems (EMS) were developed. These systems allow the access to the consumption information and help understanding the energy waste. However, some studies have proven that these systems have a clear mismatch between the information that is presented and the one the user finds useful for his daily life, leading to demotivation of use. In order to create a solution more oriented towards the user’s demands, a specially tailored language (DSL) was implemented. This solution allows the user to acquire the information he considers useful, through the construction of questions about his energy consumption. The development of this language, following the Model Driven Development (MDD) approach, took into consideration the ideas of facility managers and home users in the phases of design and validation. These opinions were gathered through meetings with experts and a survey, which was conducted to the purpose of collecting statistics about what home users want to know.
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.