314 resultados para Elution
Resumo:
Alcohols were derivatised to their carbazole-9-N-acetic acid (CRA) esters with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC . HCl) as the dehydrating agent. Studies on derivatisation conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives. The retention behaviour of alcohol derivatives was investigated by varying mobile phase compositions (ACN-water and MeOH-water). The parameters from the equation log k'=A-BX were evaluated by retention data of derivatives using an isocratic elution with different mobile phases. The results indicated that the parameters derived allowed computation of retention factors in good agreement with experiments. At the same time, a general equation was derived that makes possible predictions of partition coefficient in binary mobile phases with different proportions of organic solvent to water based on some simple regression analysis. The LC separation for the derivatised alcohols containing higher carbon alcohols showed good reproducibility on a reversed-phase C-18 column with gradient elution. The detection limits (excitation at 335 nm, emission at 360 nm) for derivatised alcohols (signal-to-noise ratio=3:1) were in the range of 0.1-0.4 pg per injection. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The influence of methanol in methanol-water mixed eluents on the capacity factor (P), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Shortterm exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - Sphi, could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w), had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to make a molecule imprinting polymer (MIP) with highly chiral selectivity against N-t-Boc-L-Trp, a new kind of "cocktail" functional monomer: acrylamide+2-vinylpyridine was investigated. The MIP showed impressive chiral selectivity (alpha=3.23). With the increasing of water content in the mobile phase, ionic and hydrophobic interaction were found to be responsible for the chiral recognition process instead of the hydrogen bond. Tailing and peak asymmetry problems were overcome by using linear gradient elution. Physical properties such as thermal stability and pore structure for the MIP were also investigated.
Resumo:
Performance of comprehensive two-dimensional liquid chromatography system is greatly improved than we reported previously by using a silica monolithic column as for the second dimensional separation. Due to the increase of the elution speed on the second dimensional monolithic column, the first dimensional column efficiency and analysis rate can be greatly improved as comparing with conventionally second dimensional column. The developed system was applied to analysis of methanol extraction of two umbelliferae herbs Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels by using CN column as for the first dimensional separation and a silica monolithic ODS column for the second dimensional separation, and the obtained three-dimensional chromatograms were treated by normalization of peak heights with the value of the highest peak or setting a certain value using a software written in-house. It was observed that much more peaks for low-abundant components in TCM extract can clearly be detected here than we reported before, due to the large difference for the amount of components in TCMs' extract. With the above improvements in separation performance and data treatment, totally about 120 components in methanol extraction of Rhizoma chuanxiong and 100 in A. sinensis were separated with UV detection within 130 min. This result meant that both the number of peaks detected increase twice but the analysis time decease twice if comparing with the previously reported result. (c) 2005 Published by Elsevier B.V.
Resumo:
Comprehensive two-dimensional gas chromatography (GC x GC) has attracted much attention for the analys is of complex samples. Even with a large peak capacity in GC x GC, peak overlapping is often met. In this paper, a new method was developed to resolve overlapped peaks based on the mass conservation and the exponentially modified Gaussian (EMG) model. Linear relationships between the calculated sigma, tau of primary peaks with the corresponding retention time (t(R)) were obtained, and the correlation coefficients were over 0.99. Based on such relationships, the elution profile of each compound in overlapped peaks could be simulated, even for the peak never separated on the second-dimension. The proposed method has proven to offer more accurate peak area than the general data processing method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A coupled-column liquid chromatographic method for the direct analysis of 14 urinary nucleosides is described. Efficient on-line clean-up and concentration of 14 nucleosides from urine samples were obtained by using a boronic acid-substituted silica column (40 turn x 4.0 mm I.D.) as the first column (Col-1) and a Hypersil ODS2 column (250 mm x 4.6 mm I.D.) as the second column (Col-2). The mobile phases applied consisted of 0.25 mol/L ammonium acetate (pH 8.5) on Col-1, and of 25 mmol/L potassium dihydrogen phosphate (pH 4.5) on Col-2, respectively. Determination of urinary nucleosides was performed on Col-2 column by using a linear gradient elution comprising 25 mmol/L potassium dihydrogen phosphate (pH 4.5) and methanol-water (60:40, v/v) with UV detection at 260 nm. Urinary nucleosides analysis can be carried out by this procedure in 50 min requiring only pH adjustment and the protein precipitation by centrifugation of urine samples. Calibration plots of 14 standard nucleosides showed excellent linearity (r > 0.995) and the limits of detection were at micromolar levels. Both of intra- and inter-day precisions of the method were better than 6.6% for direct determination of 14 nucleosides. The validated method was applied to quantify 14 nucleosides in 20 normal urines to establish reference ranges. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Capillary electrophoresis (CE) of erythrocytes from different sources under various conditions is reported in this paper. It was found that erythrocyte samples from sheep, duck, and human showed characteristic and reproducible elution peaks, and that the retention times of A-, B-, AB-, and O-type erythrocytes from human blood were distinctively different; even subtle differences, among individuals with the same blood type could be detected by CE. A strictly linear correlation was obtained between the peak area and the amount of human erythrocyte over a range of 4.8×102–1.9×104 cells (r=0.999), indicating that CE could be used for rapid and accurate quantification of erythrocytes. Using this CE protocol, the decrease of the surface electrical charge of erythrocyte during storage was confirmed. Therefore, this work demonstrated that CE could be a useful alternative for characterizing and quantifying erythrocytes or other cells.
Resumo:
A selective and sensitive liquid chromatography (LC)-atmospheric pressure chemical ionisation (APCI)-mass spectroscopic (MS) assay of canrenone has been developed and validated employing Dried Blood Spots (DBS) as the sample collection medium. DBS samples were prepared by applying 30 mu l of spiked whole blood onto Guthrie cards. A 6 mm disc was punched from the each DBS and extracted with 2 ml of methanolic solution of 17 alpha-methyltestosterone (Internal Standard). The methanolic extract was evaporated to dryness and reconstituted in acetonitrile:water (1:9, v/v). The reconstituted solution was further subjected to solid phase extraction using HLB cartridges. Chromatographic separation was achieved using Waters Sunfire C18 reversed-phase column using isocratic elution, followed by a high organic wash to clear late eluting/highly retained components. The mobile phase consisted of methanol:water (60:40, v/v) pumped at a flow rate of 0.3 ml/min. LC-APCI-MS detection was performed in the selected-ion monitoring (SIM) mode using target ions at m/z 341.1 and 303.3 for canrenone and internal standard respectively. The selectivity of the method was established by analysing DBS samples from 6 different sources (individuals). The calibration curve for canrenone was found to be linear over 25-1000 ng/ml (r >0.994). Accuracy (% RE) and precision (% CV) values for within and between day were
Resumo:
The rate of uptake of Endosulfan by Mytilus edulis L. exposed to pesticide concentrations of 0.1, 0.5, and 1.0 mg/l, and its subsequent elution on removal to clean sea water, was investigated. Higher residue levels were recorded for mussels exposed to higher concentrations of the pesticide, but concentration factors were reduced. There was a rapid initial fall in tissue residue levels on transfer to clean sea water due, it is suggested, to elution of Endosulfan adsorbed on particulate matter assimilated in the gut. The spawning period was prolonged at higher concentrations and, at 1.0 mg/l, the onset of spawning was delayed, possibly due to interference with gamonic action. At 0.1 mg/l, the minor protraction of the spawning period may reflect the effect of experimental tank conditions. No seasonal trend was obvious, and there was an exaggeration of the expected fall in condition in mussels exposed to higher concentrations of Endosulfan. In controls, the expected seasonal trend was reduced.
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.
Resumo:
For the first time, a simple and validated reversed-phase liquid chromatography (RP-LC) with fluorescence detection has been developed for the simultaneous analysis of glutamate (Glu), ?-aminobutyric acid (GABA), glycine (Gly) and taurine (Tau) in Wistar and tremor rats brain synaptosomes. The samples were separated on a C18 analytical column with gradient elution of methanol and 0.1 mol L-1 potassium acetate at a flow rate of 1 mL min-1. Total run time was approximately 25 min. All calibration curves exhibited good linearity (r 2 > 0.999) within test ranges. The reproducibility was estimated by intra-and inter-day assays and RSD values were less than 2.48%. The recoveries were between 96.32 and 105.21%. The method was successfully applied to the quantification of amino acids in Wistar and tremor rats brain synaptosomes. Through this developed protocol, the levels of Glu in hippocampal and prefrontal cortical synaptosomes of tremor rats were both significantly elevated than those of adult Wistar rats whereas significantly decreased concentrations of GABA and Gly were observed in the hippocampal region of tremor rats without evident difference in the prefrontal cortex between experimental and control groups. In addition, our studies also showed a marked elevation of Tau in tremor rats hippocampal synaptosomes although there was no pronounced difference in the prefrontal cortical region of Wistar and tremor rats.
Resumo:
An immunoaffinity chromatographic (IAC) method for the selective extraction and concentration of 13 organophosphorus pesticides (OPs, including coumaphos, parathion, phoxim, quinalphos, dichlofenthion, triazophos, azinphos-ethyl, phosalone, isochlorthion, parathion-methyl, cyanophos, disulfoton, and phorate) prior to analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The IAC column was prepared by covalently immobilizing a monoclonal antibody with broad specificity for OPs on CNBr-activated Sephrose 4B. The column capacity ranged from 884 to 2641 ng/mL of gel. The optimum elution solvent was 0.01 M phosphate-buffered saline containing 80% methanol. The breakthrough volume of the IAC column was found to be 400 mL. Recoveries of OPs from spiked environmental samples by IAC cleanup and HPLC-MS/MS analysis ranged from 60.2 to 107.1%, with a relative standard deviation below 11.1%. The limit of quantitation for 13 OPs ranged from 0.01 to 0.13 ng/mL (ng/g). The application of IAC cleanup coupled to HPLC-MS/MS in real environmental samples demonstrated the potential of this method for the determination of OP residues in environmental samples at trace levels.
Resumo:
Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.
Resumo:
A molecularly imprinted polymer (MIP) was prepared with caffeine as the template molecule. Thermal polymerisation (60°C) was optimised, varying ratios of monomer, cross linker and template. The polymer was used as a solid-phase extraction (SPE) sorbent, for selective trapping and pre-concentration of caffeine. Caffeine was loaded on the MIP-SPE cartridge using different loading conditions (solvents, pH value). Washing and elution of the caffeine bound to the MIP was studied utilising different protocols. The extraction protocol was successfully applied to the direct extraction of caffeine from beverages and spiked human plasma.