957 resultados para Electroweak symmetry breaking.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a scheme in which the masses of the heavier leptons obey seesaw type relations. The light lepton masses, except the electron and the electron neutrino ones, are generated by one loop level radiative corrections. We work in a version of the 3-3-1 electroweak model that predicts singlets (charged and neutral) of heavy leptons beyond the known ones. An extra U(1)(Omega) symmetry is introduced in order to avoid the light leptons getting masses at the tree level. The electron mass induces an explicit symmetry breaking at U(1)(Omega). We discuss also the mixing matrix among four neutrinos. The new energy scale required is not higher than a few TeV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the two Higgs doublet model, there is the possibility that the vacuum where the universe resides in is metastable. We present the tree-level bounds on the scalar potential parameters which have to be obeyed to prevent that situation. Analytical expressions for those bounds are shown for the most used potential, that with a softly broken Z(2) symmetry. The impact of those bounds on the model's phenomenology is discussed in detail, as well as the importance of the current LHC results in determining whether the vacuum we live in is or is not stable. We demonstrate how the vacuum stability bounds can be obtained for the most generic CP-conserving potential, and provide a simple method to implement them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the first version of a new tool to scan the parameter space of generic scalar potentials, SCANNERS (Coimbra et al., SCANNERS project., 2013). The main goal of SCANNERS is to help distinguish between different patterns of symmetry breaking for each scalar potential. In this work we use it to investigate the possibility of excluding regions of the phase diagram of several versions of a complex singlet extension of the Standard Model, with future LHC results. We find that if another scalar is found, one can exclude a phase with a dark matter candidate in definite regions of the parameter space, while predicting whether a third scalar to be found must be lighter or heavier. The first version of the code is publicly available and contains various generic core routines for tree level vacuum stability analysis, as well as implementations of collider bounds, dark matter constraints, electroweak precision constraints and tree level unitarity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the spontaneous breaking of superconformal and gauge invariances in the Abelian N = 1,2 three-dimensional supersymmetric Chern-Simons-matter (SCSM) theories in a large N flavor limit. We compute the Kahlerian effective superpotential at subleading order in 1/N and show that the Coleman-Weinberg mechanism is responsible for the dynamical generation of a mass scale in the N = 1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. We also show that the Coleman-Weinberg mechanism fails when we lift from the N = 1 to the N = 2 SCSM model. (C) 2010 Elsevier B.V All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is quite difficult to obtain non-trivial chiral symmetry breaking solutions for the quark gap equation in the presence of dynamically generated gluon masses. An effective confining propagator has recently been proposed by Cornwall in order to solve this problem. We study phenomenological consequences of this approach, showing its compatibility with the experimental data. We argue that this confining propagator should be restricted to a small region of momenta, leading to effective four-fermion interactions at low energy. © 2013 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a non-Abelian gauge theory with dynamically generated gauge boson masses and a specific chiral symmetry breaking dynamics motivated by confinement. The scalar mass is computed with the use of the Bethe-Salpeter equation and its normalization condition as a function of the SU(N) group and the respective fermionic representation. If the fermions that form the composite state are in the fundamental representation of the SU(N) group, we can generate such a light boson only for one specific number of fermions for each group. We address the uncertainties underlying this result, when considering the strong dynamics in isolation. © 2013 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)