978 resultados para Electronic structures
Resumo:
To study the complex formation of group 5 elements (Nb, Ta, Ha, and pseudoanalog Pa) in aqueous HCI solutions of medium and high concentrations the electronic structures of anionic complexes of these elements [MCl_6]^-, [MOCl_4]^-, [M(OH)-2 Cl_4]^-, and [MOCl_5]^2- have been calculated using the relativistic Dirac-Slater Discrete-Variational Method. The charge density distribution analysis has shown that tantalum occupies a specific position in the group and has the highest tendency to form the pure halide complex, [TaCl_6-. This fact along with a high covalency of this complex explains its good extractability into aliphatic amines. Niobium has equal trends to form pure halide [NbCl_6]^- and oxyhalide [NbOCl_5]^2- species at medium and high acid concentrations. Protactinium has a slight preference for the [PaOCl_5]^2- form or for the pure halide complexes with coordination number higher than 6 under these conditions. Element 105 at high HCl concentrations will have a preference to form oxyhalide anionic complex [HaOCl_5]^2- rather than [HaCl_6]^-. For the same sort of anionic oxychloride complexes an estimate has been done of their partition between the organic and aqueous phases in the extraction by aliphatic amines, which shows the following succession of the partition coefficients: P_Nb < P_Ha < P_Pa.
Resumo:
The complexes [Ru(1-C=C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C C-1,12-C2B10H11)(dppe)-Cp*] (3b), [{Ru(dppe)Cp*}(2){mu-1,10-(C C)(2)-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}(2){mu-1,12-(C C)2- 1,12-C2B10-H-10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the dethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-is-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a](+) and [4b](+) through interactions between the metal centers across a distance of ca. 12.5 angstrom. The mono-oxidized bimetallic complexes (4a](+) and [4b](+) exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an, IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H](+) and [4b-H](+) featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a](+) and [4b](+).
Resumo:
The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ca0.95Sm0.05TiO3 (CT:Sm) powder was prepared by the polymeric precursor method (PPM). Order-disorder at short and long range has been investigated by means of Raman spectroscopy, X-ray diffraction (XRD), and photoluminescence emission (PL) experimental techniques. The broad PL band and the Sm emission spectrum measured at room temperature indicate the increase of structural order with annealing temperature. The measured PL emission reveals that the PL intensity changes with the degree of disorder in the CT: Sm. The electronic structures were performed by the ab initio periodic method in the DFT level with the hybrid nonlocal B3LYP approximation. Theoretical results are analyzed in terms of DOS, charge densities, and Mulliken charges. Localized levels into the band gap of the CT: Sm material favor the creation of the electron-hole pair, supporting the observed room-temperature PL phenomenon.
Resumo:
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t**) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were also identified experimentally. A kind of optical polarization switching was identified by the redistribution of 4dz2 and 4dxz (Zr) orbitals and 2pz O orbital. As a consequence, asymmetric bending and stretching modes theoretically obtained reveal a direct dependence with their polyhedral intracluster and/or extracluster ZrO6 distortions with electronic structure. Then, CL of the as-synthesized BaZrO3 can be interpreted as a result of stable triplet excited states, which are able to trap electrons, delaying the emission process due to spin multiplicity changes. © 2013 AIP Publishing LLC.
Resumo:
Diese Studie verfolgt das Konzept der "Oligomer-Ansatz", die von Müllen angesprochen wurde et.al. vor etwa 10 Jahren. Der Schwerpunkt dieser Arbeit war die Synthese, Charakterisierung und Anwendung von halbleitenden konjugierten heteroacenes für organische Elektronik.rnZur weiteren Entwicklung der Familie von schwefelhaltigen Pentacene, zwei Moleküle (Benzo [1,2 - b :4,5-b '] bis [b] benzodithiophene und dithieno-[2,3-d: 2', 3'-d ']-benzo-[1,2-b :4,5-b'] dithiophene)rnfacilely wurden synthetisiert und charakterisiert durch eine Kombination verschiedener Methoden. Die beiden neue Moleküle weisen hervorragende ökologische Stabilität und angewendet OFETs Geräte als p-Kanal-Material. Die Vorversuche gaben Ladungsträgerbeweglichkeiten von 0,1 cm2 V-1 s-1 undrn1,6 cm2 V-1 s-1 bzw. aus den beiden Molekülen.rnAusgelöst durch die Frage "je länger desto besser?", Eine Reihe von neuen heteroheptacenes wurden synthetisiert und intensiv im Hinblick auf ihre feste Struktur, Selbst-assenbly auf der studierte Oberfläche, opto-elektro-Eigenschaften und Eigenschaften des Orbits Grenze. Einer derrnheteroheptacene Moleküle wurden als die aktiven Kanäle in OFET Geräten angewendet. Jedoch in Trotz der mehr verlängert Konjugationslänge die Geräte auf der Basis zeigten heptacenes viel schlimmer Ladungsträgerbeweglichkeiten als die heteropentacenes. Viele Faktoren können Festlegung der endgültigen Leistung der Produkte und der chemischen Struktur ist nur einer von ihnen.rnIn dieser Hinsicht scheint es, dass es auch sinnvoll, den Einfluss der Heteroatome Studie und Alkylsubstitution auf der soliden und elektronischen Strukturen. Daher mehr heteroheptacenes wurden synthetisiert. Abwechslungsreiches in der Anzahl und Art der heteroatomare Brücke,rndiese Oligoazene ausgestellt dramatisch anders feste Struktur und opto-elektronischernEigenschaften. Darüber hinaus wurde eine kombinierte DFT Berechnung der Molekülorbitale dieser heptacenes darauf hingewiesen, dass die Einführung von Stickstoff Brücken wird die π-Orbitale zu destabilisieren, während stabilisieren den Schwefel Brücken sowohl HOMO und LUMO Energien. Dies ist wichtig, wenn man will hoch π verlängert Oligoazene synthetisieren und dabei eine angemessene Stabilität.
Resumo:
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors
Resumo:
The syntheses, properties and electronic structures of a series of porphyrin dimers connected by two-atom bridges were compared. The study found that an azo linker results in the most efficient electronic communication between the two porphyrin rings, and is the superior connector for dimers, trimers and oligomers in the design of nonlinear optical materials. This has implications for the design of molecular probes and sensors, photodynamic therapy, microfabrication, and three-dimensional optical data storage. The research led to the synthesis of a number of new porphyrin monomers and dimers, which were characterised using structural, spectroscopic and spectrometric techniques.
Resumo:
C60Br8, unlike C60Br6 and C60Cl6, forms a solid charge-transfer compound with tetrathiafulvalene (TTF), the composition being C60Br8(TTF)(8). The unique complex-forming property of C60Br8 can be understood on the basis of the electronic structures of the halogenated derivatives of C-60. Molecular orbital calculations show that the low LUMO energy of C60Br8 compared with the other halogen derivatives renders the formation of the complex with TTF favourable, the four virtual LUMOs being able to accept 8 electrons. The Raman spectrum of C60Br8(TTF)(8) shows a marked softening of the bands (-46 cm(-1) on average) with respect to C60Br8 suggesting that indeed 8 electrons are transferred per C60Br8 molecule, one from each TTF molecule. The complex is weakly paramagnetic and shows a magnetic transition around 80 K.
Resumo:
Much progress in nanoscience and nanotechnology has been made in the past few years thanks to the increased availability of sophisticated physical methods to characterize nanomaterials. These techniques include electron microscopy and scanning probe microscopies, in addition to standard techniques such as X-ray and neutron diffraction, X-ray scattering, and various spectroscopies. Characterization of nanomaterials includes the determination not only of size and shape, but also of the atomic and electronic structures and other important properties. In this article we describe some of the important methods employed for characterization of nanostructures, describing a few case studies for illustrative purposes. These case studies include characterizations of Au, ReO3, and GaN nanocrystals; ZnO, Ni, and Co nanowires; inorganic and carbon nanotubes; and two-dimensional graphene.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.
Resumo:
The p-block semiconductors are regarded as a new family of visible-light photocatalysts because of their dispersive and anisotropic band structures as well as high chemical stability. The bismuth oxide halides belong to this family and have band structures and dispersion relations that can be engineered by modulating the stoichiometry of the halogen elements. Herein, we have developed a new visible-light photocatalyst Bi 24 O 31 Cl 10 by band engineering, which shows high dye-sensitized photocatalytic activity. Density functional theory calculations reveal that the p-block elements determine the nature of the dispersive electronic structures and narrow band gap in Bi 24 O 31 Cl 10. Bi 24 O 31 Cl 10 exhibits excellent visible-light photocatalytic activity towards the degradation of Rhodamine B, which is promoted by dye sensitization due to compatible energy levels and high electronic mobility. In addition, Bi 24 O 31 Cl 10 is also a suitable photoanode material for dye-sensitized solar cells and shows power conversion efficiency of 1.5%.
Resumo:
Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.