904 resultados para Electronic drives of three-phase induction motor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A coupled system simulator, based on analytical circuit equations and a finite element method (FEM) model of the motor has been developed and it is used to analyse a frequency-converterfed industrial squirrel-cage induction motor. Two control systems that emulate the behaviour of commercial direct-torque-controlled (DTC) and vector-controlled industrial frequency converters have been studied, implemented in the simulation software and verified by extensive laboratory tests. Numerous factors that affect the operation of a variable speed drive (VSD) and its energy efficiency have been investigated, and their significance in the simulation of the VSD results has been studied. The dependency of the frequency converter, induction motor and system losses on the switching frequency is investigated by simulations and measurements at different speeds for both the vector control and the DTC. Intensive laboratory measurements have been carried out to verify the simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detta arbete fokuserar på modellering av katalytiska gas-vätskereaktioner som genomförs i kontinuerliga packade bäddar. Katalyserade gas-vätskereaktioner hör till de mest typiska reaktionerna i kemisk industri; därför behandlas här packade bäddreaktorer som ett av de populäraste alternativen, då kontinuerlig drift eftersträvas. Tack vare en stor katalysatormängd per volym har de en kompakt struktur, separering av katalysatorn behövs inte och genom en professionell design kan den mest fördelaktiga strömningsbilden upprätthållas i reaktorn. Packade bäddreaktorer är attraktiva p.g.a. lägre investerings- och driftskostnader. Även om packade bäddar används intensivt i industri, är det mycket utmanande att modellera. Detta beror på att tre faser samexisterar och systemets geometri är komplicerad. Existensen av flera reaktioner gör den matematiska modelleringen även mera krävande. Många förenklingar blir därmed nödvändiga. Modellerna involverar typiskt flera parametrar som skall justeras på basis av experimentella data. I detta arbete studerades fem olika reaktionssystem. Systemen hade studerats experimentellt i vårt laboratorium med målet att nå en hög produktivitet och selektivitet genom ett optimalt val av katalysatorer och driftsbetingelser. Hydrering av citral, dekarboxylering av fettsyror, direkt syntes av väteperoxid samt hydrering av sockermonomererna glukos och arabinos användes som exempelsystem. Även om dessa system hade mycket gemensamt, hade de också unika egenskaper och krävde därför en skräddarsydd matematisk behandling. Citralhydrering var ett system med en dominerande huvudreaktion som producerar citronellal och citronellol som huvudprodukter. Produkterna används som en citrondoftande komponent i parfymer, tvålar och tvättmedel samt som plattform-kemikalier. Dekarboxylering av stearinsyra var ett specialfall, för vilket en reaktionsväg för produktion av långkedjade kolväten utgående från fettsyror söktes. En synnerligen hög produktselektivitet var karakteristisk för detta system. Även processuppskalning modellerades för dekarboxylerings-reaktionen. Direkt syntes av väteperoxid hade som målsättning att framta en förenklad process att producera väteperoxid genom att låta upplöst väte och syre reagera direkt i ett lämpligt lösningsmedel på en aktiv fast katalysator. I detta system förekommer tre bireaktioner, vilka ger vatten som oönskad produkt. Alla dessa tre reaktioner modellerades matematiskt med hjälp av dynamiska massbalanser. Målet med hydrering av glukos och arabinos är att framställa produkter med en hög förädlingsgrad, nämligen sockeralkoholer, genom katalytisk hydrering. För dessa två system löstes ämnesmängd- och energibalanserna simultant för att evaluera effekter inne i porösa katalysatorpartiklar. Impulsbalanser som bestämmer strömningsbetingelser inne i en kemisk reaktor, ersattes i alla modelleringsstudier med semi-empiriska korrelationsuttryck för vätskans volymandel och tryckförlust och med axiell dispersionsmodell för beskrivning av omblandningseffekter. Genom att justera modellens parametrar kunde reaktorns beteende beskrivas väl. Alla experiment var genomförda i laboratorieskala. En stor mängd av kopplade effekter samexisterade: reaktionskinetik inklusive adsorption, katalysatordeaktivering, mass- och värmeöverföring samt strömningsrelaterade effekter. En del av dessa effekter kunde studeras separat (t.ex. dispersionseffekter och bireaktioner). Inverkan av vissa fenomen kunde ibland minimeras genom en noggrann planering av experimenten. På detta sätt kunde förenklingar i modellerna bättre motiveras. Alla system som studerades var industriellt relevanta. Utveckling av nya, förenklade produktionsteknologier för existerande kemiska komponenter eller nya komponenter är ett gigantiskt uppdrag. Studierna som presenterades här fokuserade på en av den teknisk-vetenskapliga utfärdens första etapper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies of short and long sleepers have not been conducted previously. We collected socioeconomic, psychological, and polysomnographic characteristics of 6501 parents (3252 men and 3249 women) of 4036 primary school children in Guangzhou city. The study data were collected in three phases. The overall prevalence of short (5 h or less) and long (10 h or more) sleep duration was 0.52 and 0.64%, respectively. Long sleepers had higher Eysenck Personality Questionnaire neuroticism scores [odds ratio (OR)=1.224, 95% confidence interval (CI)=1.047-1.409] and lower education levels (OR=0.740, 95%CI=0.631-0.849) than short sleepers. In the polysomnographic assessment, short, long, and normal sleepers (7-8 h) shared similar durations of Stage 3 sleep (short=25.7±10.7, long=20.3±7.9, and normal=28.0±12.8 min, F=1.402, P=0.181). In daytime multiple sleep latency tests, short sleepers (10/19, 52.6%) were more prone to have a short sleep latency (≤8 min) than long sleepers (2/23, 8.7%). In addition to different sleep durations, neuroticism might also contribute to differences between short and long sleepers in social achievements. Stage 3 sleep might be essential for humans. The short sleep latency (≤8 min) of short sleepers in multiple sleep latency tests should be interpreted cautiously, since it was of the same severity as required for a diagnosis of narcolepsy or idiopathic hypersomnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency is an important topic when considering electric motor drives market. Although more efficient electric motor types are available, the induction motor remains as the most common industrial motor type. IEC methods for determining losses and efficiency of converter-fed induction motors were introduced recently with the release of technical specification IEC/TS 60034-2-3. Determining the induction motor losses with IEC/TS 60034-2-3 method 2-3-A and assessing the practical applicability of the method are the main interests of this study. The method 2-3-A introduces a specific test converter waveform to be used in the measurements. Differences between the induction motor losses with a test converter supply, and with a DTC converter supply are investigated. In the IEC methods, the tests are run at motor rated fundamental voltage, which, in practice, requires the frequency converter to be fed with a risen input voltage. In this study, the tests are run on both frequency converters with artificially risen converter input voltage, resulting in rated motor fundamental input voltage as required by IEC. For comparison, the tests are run with both converters on normal grid input voltage supply, which results in lower motor fundamental voltage and reduced flux level, but should be more relevant from practical point of view. According to IEC method 2-3-A, tests are run at rated motor load, and to ensure comparability of the results, the rated load is used in the grid-fed converter measurements, although motor is overloaded while producing the rated torque at reduced flux level. The IEC 2-3-A method requires also sinusoidal supply test results with IEC method 2-1-1B. Therefore, the induction motor losses with the recently updated IEC 60034-2-1 method 2-1-1B are determined at the motor rated voltage, but also at two lower motor voltages, which are according to the output fundamental voltages of the two network-supplied converters. The method 2-3-A was found to be complex to apply but the results were stable. According to the results, the method 2-3-A and the test converter supply are usable for comparing losses and efficiency of different induction motors at the operating point of rated voltage, rated frequency and rated load, but the measurements do not give any prediction of the motor losses at final application. One might therefore strongly criticize the method’s main principles. It seems, that the release of IEC 60034-2-3 as a technical specification instead of a final standard for now was justified, since the practical relevance of the main method is questionable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cold shock protein (CSP) family includes small polypeptides that are induced upon temperature downshift and stationary phase. The genome of the alphaproteobacterium Caulobacter crescentus encodes four CSPs, with two being induced by cold shock and two at the onset of stationary phase. In order to identify the environmental signals and cell factors that are involved in cspD expression at stationary phase, we have analyzed cspD transcription during growth under several nutrient conditions. The results showed that expression of cspD was affected by the medium composition and was inversely proportional to the growth rate. The maximum levels of expression were decreased in a spoT mutant, indicating that ppGpp may be involved in the signalization for carbon starvation induction of cspD. A Tn5 mutant library was screened for mutants with reduced cspD expression, and 10 clones that showed at least a 50% reduction in expression were identified. Among these, a strain with a transposon insertion into a response regulator of a two-component system showed no induction of cspD at stationary phase. This protein (SpdR) was able to acquire a phosphate group from its cognate histidine kinase, and gel mobility shift assay and DNase I footprinting experiments showed that it binds to an inverted repeat sequence of the cspD regulatory region. A mutated SpdR with a substitution of the conserved aspartyl residue that is the probable phosphorylation site is unable to bind to the cspD regulatory region and to complement the spdR mutant phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational features of three 2-sulphur-substituted cyclohexanone derivatives, which differ in the number of sulphur-bound oxygen atoms, i.e. zero (I), one (II) and two (III), were investigated by single crystal X-ray crystallography and geometry optimized structures determined using Hartree-Fock method. In each of (I)-(III) an intramolecular S center dot center dot center dot O(carbonyl) interaction is found with the magnitude correlated with the oxidation state of the sulphur atom, i.e. 2.838(3) angstrom in (I) to 2.924(2) angstrom in (II) to 3.0973(18) angstrom in (III). There is an inverse relationship between the strength of this interaction and the magnitude of the carbonyl bond. The supramolecular aggregation patterns are primarily determined by C-H center dot center dot center dot O contacts and are similarly influenced by the number of oxygen atoms in the molecular structures. Thus, a supramolecular chain is found in the crystal structure of (I). With an additional oxygen atom available to participate in C-H center dot center dot center dot O interactions, as in (II), a two-dimensional array is found. Finally, a three-dimensional network is found for (III). Despite there being differences in conformations between the experimental structures and those calculated in the gas-phase, the S center dot center dot center dot O interactions persist. The presence of intermolecular C-H center dot center dot center dot O interactions involving the cyclohexanone-carbonyl group in the solid-state, disrupts the stabilising intramolecular C-H center dot center dot center dot O interaction in the energetically-favoured conformation. (I): C(12)H(13)NO(3)S, triclinic space group P (1) over bar with a = 5.392(3) angstrom b = 10.731(6) angstrom, c = 11.075(6) angstrom, alpha = 113.424(4)degrees, beta = 94.167(9)degrees, gamma = 98.444(6)degrees, V = 575.5(6) angstrom(3), Z = 2, R(1) = 0.052; (II): C(12)H(13)NO(4)S, monoclinic P2(1)/n, a = 7.3506(15) angstrom, b = 6.7814(14) angstrom, c = 23.479(5) angstrom, beta = 92.94(3)degrees, V = 1168.8(4) angstrom(3), Z = 4, R(1) = 0.046; (III): C(12)H(13)NO(5)S, monoclinic P2(1)/c, a = 5.5491(11) angstrom, b = 24.146(3) angstrom, c = 11.124(3) angstrom, beta = 114.590(10)degrees, V = 1355.3(5) angstrom(3), Z = 4, R(1) = 0.051.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a factor referred to as k(f) for linear induction motor end effect analysis is presented. The mathematical model takes into account the longitudinal entry end effect. The entry end effect produces considerable distortion in magnetic field distribution. It is shown how this influence is derived from the machine-developed force that is calculated through the application of the I-D theory. The k(f) factor establishes the relationship between the longitudinal end effect and machine parameters, mainly the number of magnetic poles, secondary resistivity, and frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrodynamic characterization and the performance evaluation of an aerobic three phase fluidized bed reactor in wastewater fish culture treatment are presented in this report. The objective of this study was to evaluate the organic matter, nitrogen and phosphorous removal efficiency in a physical and biological wastewater treatment system of an intensive Nile Tilapia laboratory production with recirculation. The treatment system comprised of a conventional sedimentation basin operated at a hydraulic detention time HDT of 2.94 h and an aerobic three phase airlift fluidized bed reactor AAFBR operated at an 11.9 min HDT. Granular activated carbon was used as support media with density of 1.64 g/cm(3) and effective size of 0.34 mm in an 80 g/L constant concentration. Mean removal efficiencies of BOD, COD, phosphorous, total ammonia nitrogen and total nitrogen were 47%, 77%, 38%, 27% and 24%, respectively. The evaluated system proved an effective alternative for water reuse in the recirculation system capable of maintaining water quality characteristics within the recommended values for fish farming and met the Brazilian standards for final effluent discharges with exception of phosphorous values. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into quasi-modes a, b and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this letter is to propose an alternative modal representation of a nontransposed three-phase transmission line with a vertical symmetry plane by using two transformation matrices. Initially, Clarke's matrix is used to separate the line into components a, 0, and zero. Because a and zero components are not exact modes, they can be considered as being a two-phase line that will be decomposed in its exact modes by using a 2 x 2 modal transformation matrix. This letter will describe the characteristics of the two-phase line before mentioned. This modal representation is applied to decouple a nontransposed three-phase transmission line with a vertical symmetry plane whose nominal voltage is 440 kV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correction procedure for Clarke's matrix, considering three-phase transmission line analyzes, is analyzed step by step in this paper, searching to improve the application of this procedure. Changing the eigenvectors as modal transformation matrices, Clarke's matrix has been applied to analyses for transposed and untransposed three-phase transmission line cases. It is based on the fact that Clarke's matrix is an eigenvector matrix for transposed three-phase transmission lines considering symmetrical and asymmetrical cases. Because of this, the application of this matrix has been analyzed considering untransposed three-phase transmission lines. In most of these cases, the errors related to the eigenvalues can be considered negligible. It is not true when it is analyzed the elements that are not in main diagonal of the quasi-mode matrix. This matrix is obtained from the application of Clarke's matrix. The quasi-mode matrix is correspondent to the eigenvalue matrix. Their off-diagonal elements represent couplings among the quasi-modes. So, the off-diagonal quasi-mode element relative values are not negligible when compared to the eigenvalues that correspond to the coupled quasi-modes. Minimizing these relative values, the correction procedure is analyzed in detail, checking some alternatives for the correction procedure application.