944 resultados para Electron energy levels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron energy-loss near-edge structure (ELNES) at the oxygen K-edge has been investigated in a range of yttria-stabilized zirconia (YSZ) materials. The electronic structure of the three polymorphs of pure ZrO2 and of the doped YSZ structure close to the 33 mol %Y2O3 composition have been calculated using a full-potential linear muffin-tin orbital method (NFP-LMTO) as well as a pseudopotential based technique. Calculations of the ELNES dipole transition matrix elements in the framework of the NFP-LMTO scheme and inclusion of core hole screening within Slater's transition state theory enable the ELNES to be computed. Good agreement between the experimental and calculated ELNES is obtained for pure monoclinic ZrO2. The agreement is less good with the ideal tetragonal and cubic structures. This is because the inclusion of defects is essential in the calculation of the YSZ ELNES. If the model used contains ordered defects such as vacancies and metal Y planes, agreement between the calculated and experimental O K-edges is significantly improved. The calculations show how the five different O environments of Zr,Y,O, are connected with the features observed in the experimental spectra and demonstrate clearly the power of using ELNES to probe the stabilization mechanism in doped metal oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates for fine-structure transitions in nickel ions (Ni XIII-XVI) have been calculated using the GRASP code. Configuration interaction and relativistic effects have been included, and comparisons are made with available data. Energy levels and radiative rates are tabulated for transitions among the 48, 43, 32, and 84 levels of Ni XIII, Ni XIV, Ni XV, and Ni XVI, respectively. The energy levels are assessed to be accurate to better than 5% for a majority of levels, while oscillator strengths for all strong transitions are accurate to better than 20%. (C) 2003 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates have been calculated for fine-structure transitions among the lowest 89 levels of the (1s(2)) 2s(2)2p(6), 2s(2) 2p(5) 3 l, 2s(2) 2p(5) 4l, 2s2p(6) 3 l, and 2s2p(6)4l configurations of Fe XVII using the GRASP code of Dyall et al. Collision strengths have also been calculated, for transitions among the lowest 55 levels, using the recently developed Dirac atomic R-matrix code (DARC) of Norrington & Grant. The results are compared with those available in the literature, and the accuracy of the data is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energies for 524 levels of Ar XIII, 460 levels of Ar XIV and 156 levels of Ar XV have been calculated using the GRASP code of Dyall et al. (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with the limited results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 1%, whereas results for other parameters are probably accurate to better than 20%. Additionally, the level lifetimes derived from our radiative rates are in excellent agreement with measured values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energies of the 700 lowest levels in Fe XX have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E I), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels for transitions among the lowest 24 fine- structure levels belonging to the 1s(2)nl(n greater than or equal to 5) configurations of Li-like Ar XVI and Fe XXIV have been calculated using the fully relativistic GRASP code. Oscillator strengths, radiative rates and line strengths have also been generated among these levels for the four types of transitions: electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2). Comparisons are made for the electric dipole transitions with other available results, and the accuracy of the present data is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable measurement of the electron energy distribution function (EEDF) of plasmas is one of the most important subjects of plasma diagnostics, because this piece of information is the key to understand basic discharge mechanisms. Specific problems arise in the case of RF-excited plasmas, since the properties of electrons are subject to changes on a nanosecond time scale and show pronounced spatial anisotropy. We report on a novel spectroscopic method for phase- and space-resolved measurements of the electron energy distribution function of energetic (> 12 eV) electrons in RF discharges. These electrons dominate excitation and ionization processes and are therefore of particular interest. The technique is based on time-dependent measurements during the RF cycle of excited-state populations of rare gases admixed in small fractions. These measurements yield � in combination with an analytical model � detailed information on the excitation processes. Phase-resolved optical emission spectroscopy allows us to overcome the difficulties connected with the very low densities (107�109 cm�3) and the transient character of the electrons in the sheath region. The EEDF of electrons accelerated in the sheath region can be described by a shifted Maxwellian with a drift velocity component in direction of the electric field. The method yields the high-energy tail of the EEDF on an absolute scale. The applicability of the method is demonstrated at a capacitively coupled RF discharge in hydrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. In this paper we report calculations for energy levels, radiative rates, and excitation rates for transitions in O IV. Methods. The grasp (general-purpose relativistic atomic structure package) and FAC (flexible atomic code) were adopted for calculating energy levels and radiative rates, and the Dirac atomic R-matrix code (DARC) used to determine the excitation rates. Results. Oscillator strengths and radiative rates are reported for all E1, E2, M1, and M2 transitions among the lowest 75 levels of O IV. Additionally, lifetimes are reported for all levels and comparisons made with those available in the literature. Finally, effective collision strengths are reported for all transitions over a wide temperature range below 106 K. Comparisons are made with earlier results and the accuracy of the data is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (IS2 2s(2) 2P(6)) 3l(2) , 3l3l', and 3l4l configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interact ion (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate Cl for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (MI), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. In this paper we report calculations for energy levels, radiative rates and excitation rates for transitions in Ni xi.
Methods. The grasp (General-purpose Relativistic Atomic Structure Package) and fac (Flexible Atomic Code) have been adopted
for calculating energy levels and radiative rates, and the Dirac Atomic R-matrix Code (darc) has been used to determine the excitation
rates.
Results. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest
250 levels of Ni xi. Additionally, lifetimes are also reported for all levels. However, results for excitation rates are presented only for
transitions among the lowest 17 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.